体验记录——触手可及,函数计算玩转 AI 大模型

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 阿里云推出的“触手可及,函数计算玩转 AI 大模型”解决方案,通过按量付费、卓越弹性和快速交付能力,为企业提供了便捷的AI大模型部署途径。评测报告详细分析了该方案的实践原理、部署过程及优势,展示了其在高并发场景下的高效性和成本优势,并提出了改进建议。

image.png
一、引言
在AI时代下,大模型的丰富类型和强大功能正在推动各行各业的智能化转型。企业纷纷寻求部署自己的大模型,以满足特定业务需求,从而在市场竞争中脱颖而出。阿里云推出的“触手可及,函数计算玩转 AI 大模型”解决方案,通过按量付费、卓越弹性和快速交付能力,为企业提供了便捷的AI大模型部署途径。本评测报告将对该解决方案进行详细分析,以期为读者提供有价值的参考。

二、产品概述
阿里云函数计算是一种无需管理服务器的无服务器计算服务,用户只需编写代码并上传,即可自动扩展以应对高并发场景。结合AI大模型,函数计算可以提供卓越的弹性和快速交付能力,使企业能够轻松应对AI应用的高并发需求。通过函数计算,企业无需预先配置大量计算资源,只需根据实际使用量进行付费,大大降低了成本。同时,函数计算还支持多种编程语言和框架,方便企业快速构建和部署AI应用。

三、实践测评
在本次评测中,我重点体验了《触手可及,函数计算玩转 AI 大模型》解决方案的实践原理和部署过程。方案详细介绍了如何利用阿里云函数计算来部署AI大模型,包括环境准备、代码编写、模型上传、服务配置等步骤。整个流程描述清晰易懂,让我能够迅速上手并完成部署任务。在部署过程中,我得到了足够的引导以及文档帮助。阿里云提供了详细的官方文档和教程视频,帮助我解决了遇到的问题。然而,在部署过程中仍然遇到了一些报错和异常情况,如环境变量配置错误、依赖库缺失等。但通过查阅相关资料和社区讨论,我成功解决了这些问题。

通过部署实践,我深刻体会到了使用函数计算部署AI大模型的优势。首先,函数计算具有卓越的弹性和快速交付能力,能够自动扩展以应对高并发场景;其次,函数计算采用按量付费模式,降低了企业的成本负担;最后,函数计算还支持多种编程语言和框架,方便企业快速构建和部署AI应用。

1、对本解决方案的实践原理理解程度如何?是否觉得描述清晰?若有任何不明确之处,请提供具体的反馈和建议。

我对《触手可及,函数计算玩转 AI 大模型》解决方案的实践原理有了较为深入的理解。该方案通过阿里云函数计算的按量付费、卓越弹性和快速交付能力,为企业提供了便捷高效的AI大模型部署途径。整个方案的描述非常清晰,从环境准备到代码编写再到模型上传和服务配置,每一步都详细阐述了操作步骤和注意事项。然而,在阅读过程中我也发现了一些可以进一步优化的地方。例如,在描述某些技术细节时可以使用更多的图表或示例代码来帮助读者更好地理解;此外,在介绍函数计算的优势时可以结合实际案例进行说明以增强说服力。

2、在部署体验过程中是否得到足够的引导以及文档帮助?过程中是否遇到过哪些报错或异常?如有,请列举。

在部署体验过程中我得到了足够的引导以及文档帮助。阿里云提供了详细的官方文档和教程视频这些资源涵盖了从环境搭建到服务部署的各个方面为我解决了很多疑惑。然而在实际操作过程中仍然遇到了一些报错和异常情况。例如在配置环境变量时由于疏忽导致变量名写错从而引发了错误;在上传模型文件时由于文件格式不兼容导致上传失败。但通过查阅相关资料和社区讨论我成功解决了这些问题并顺利完成了部署任务。

image.png

3、在部署体验过程是否有效地展现了使用函数计算部署AI大模型的优势?若有改进空间,请提供具体建议。

在部署体验过程中我深刻体会到了使用函数计算部署AI大模型的优势。首先函数计算具有卓越的弹性和快速交付能力能够自动扩展以应对高并发场景这大大降低了企业的运维成本;其次函数计算采用按量付费模式使得企业只需根据实际使用量进行付费避免了资源的浪费;最后函数计算还支持多种编程语言和框架方便企业快速构建和部署AI应用。当然该方案仍有改进空间。例如可以进一步优化文档和教程内容提供更多的示例代码和故障排除指南;此外还可以加强社区支持和交流活动促进用户之间的经验分享和问题解决。

4、部署实践后,是否能够清晰理解解决方案旨在解决的问题及其适用的业务场景?该方案是否符合实际生产环境的需求?若存在不足,请详细说明。

通过部署实践我能够清晰理解《触手可及,函数计算玩转 AI 大模型》解决方案旨在解决的问题及其适用的业务场景。该方案主要针对企业在部署AI大模型时面临的成本高、周期长等痛点问题通过利用阿里云函数计算的优势提供了一种高效便捷的解决方案。在实际生产环境中该方案具有很高的实用价值尤其适用于那些需要快速响应市场变化、处理高并发请求的企业。然而该方案也存在一些不足之处。例如在处理超大规模数据时可能存在一定的性能瓶颈;此外在与其他云服务的集成方面还有待进一步完善。因此在未来的发展中阿里云可以继续优化该方案提高其性能和易用性以满足更多企业的需求。

image.png

四、总结与展望

通过参与阿里云“触手可及,函数计算玩转 AI 大模型”解决方案的评测活动,我对使用函数计算部署AI大模型有了更深入的了解和认识。该方案不仅降低了企业的成本负担还提高了部署效率和灵活性为企业带来了极大的便利。相信在未来的发展中阿里云将继续发挥其在云计算领域的优势为企业提供更加优质、高效的解决方案。同时我也期待看到更多类似的优秀作品涌现共同推动大数据技术和AI应用的发展。

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
相关文章
|
8天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
138 97
|
13天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
13天前
|
机器学习/深度学习 人工智能 智能设计
VisionFM:通用眼科 AI 大模型,具备眼科疾病诊断能力,展现出专家级别的准确性
VisionFM 是一个多模态多任务的视觉基础模型,专为通用眼科人工智能设计。通过预训练大量眼科图像,模型能够处理多种眼科成像模态,并在多种眼科任务中展现出专家级别的智能性和准确性。
56 4
VisionFM:通用眼科 AI 大模型,具备眼科疾病诊断能力,展现出专家级别的准确性
|
20小时前
|
数据采集 人工智能 搜索推荐
SocraticLM:通过 AI 提问引导学生主动思考,中科大与科大讯飞联合推出苏格拉底式教育大模型
SocraticLM 是由中科大和科大讯飞联合开发的苏格拉底式教学大模型,通过提问引导学生主动思考,提供个性化教学,显著提升教学效果。
16 6
SocraticLM:通过 AI 提问引导学生主动思考,中科大与科大讯飞联合推出苏格拉底式教育大模型
|
6天前
|
人工智能 自然语言处理 前端开发
三大行业案例:AI大模型+Agent实践全景
本文将从AI Agent和大模型的发展背景切入,结合51Talk、哈啰出行以及B站三个各具特色的行业案例,带你一窥事件驱动架构、RAG技术、人机协作流程,以及一整套行之有效的实操方法。具体包含内容有:51Talk如何让智能客服“主动进攻”,带来约课率、出席率双提升;哈啰出行如何由Copilot模式升级为Agent模式,并应用到客服、营销策略生成等多个业务场景;B站又是如何借力大模型与RAG方法,引爆了平台的高效内容检索和强互动用户体验。
78 5
|
3天前
|
人工智能 供应链 安全
面向高效大模型推理的软硬协同加速技术 多元化 AI 硬件引入评测体系
本文介绍了AI硬件评测体系的三大核心方面:统一评测标准、平台化与工具化、多维度数据消费链路。通过标准化评测流程,涵盖硬件性能、模型推理和训练性能,确保评测结果客观透明。平台化实现资源管理与任务调度,支持大规模周期性评测;工具化则应对紧急场景,快速适配并生成报告。最后,多维度数据消费链路将评测数据结构化保存,服务于综合通用、特定业务及专业性能分析等场景,帮助用户更好地理解和使用AI硬件。
|
3天前
|
人工智能 自然语言处理 API
大模型编程(3)让 AI 帮我调接口
这是大模型编程系列第三篇,分享学习某云大模型工程师ACA认证免费课程的笔记。本文通过订机票和查天气的例子,介绍了如何利用大模型API实现函数调用,解决实际业务需求。课程内容详实,推荐感兴趣的朋友点击底部链接查看原文,完全免费。通过这种方式,AI可以主动调用接口并返回结果,极大简化了开发流程。欢迎在评论区交流实现思路。
30 1
|
6天前
|
人工智能 资源调度 调度
云上AI Infra解锁大模型创新应用
本节课程由阿里云智能集团资深技术专家王超分享,主题为AI基础设施的发展趋势。课程聚焦于AI Infra设计与Scaling Law,探讨了下一代AI基础设施的设计目标、功能升级及推理场景中的应用。主要内容包括高效支持大规模模型训练和推理、全球调度系统的设计、Rack level的Scale优化以及多租户容器化使用方式。通过这些改进,旨在提升并行效率、资源利用率及稳定性,推动AI基础设施迈向更高性能和更优调度的新阶段。
|
11天前
|
人工智能 自然语言处理 计算机视觉
AI大模型开启智能化新时代
12月19日下午,复旦大学计算机科学技术学院第十二期“步青讲坛”在江湾校区二号交叉学科楼E1006报告厅举行。本期讲坛特别邀请了阿里巴巴集团副总裁、IEEE Fellow叶杰平教授做题为《AI大模型开启智能化新时代》的精彩技术报告。
85 4
|
12天前
|
人工智能 运维 Devops
CAP:Serverless + AI 让应用开发更简单
对于众多开发者而言,Serverless 架构的核心优势在于其能够无缝集成多种云产品与组件,从而使得开发者可以更加专注于核心业务逻辑和创新。此外,Serverless 架构还提供了按量付费的灵活计费模式,进一步降低了资源成本。使用云应用开发平台 CAP,在 AI 领域,企业就可以专注于模型训练、算法优化等关键任务,让 AI 应用的开发、部署以及全生命周期的管理更加简单。可以预见 Serverless 技术将催生一系列创新且有趣的应用,而这些应用将不断拓展 AI 技术的边界。