计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-26(上)

简介: 计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-26(上)

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-26

1. LLMs Still Can’t Plan; Can LRMs? A Preliminary Evaluation of OpenAI’s o1 on PlanBench

Authors: Karthik Valmeekam, Kaya Stechly, Subbarao Kambhampati

LLMs仍然无法规划;LRMs可以吗?对OpenAI的o1在PlanBench上的初步评估

摘要

本文探讨了大型语言模型(LLMs)是否具备规划能力,并特别评估了OpenAI最新模型o1(草莓模型)在PlanBench基准上的表现。尽管o1在性能上相较于其他LLMs有显著提升,但仍未达到饱和状态,这引发了关于准确性、效率和保证的讨论。

创新点

  • 提出了将大型推理模型(LRMs)与LLMs进行比较的新视角。
  • 对o1模型在规划任务上的能力进行了初步评估。

算法模型

  • o1模型:OpenAI开发的新型模型,旨在通过更深入的“思考”来解决科学、编码和数学领域的复杂任务。

实验效果

  • Blocksworld Zero Shot: 准确率97.8%,执行时间40.43秒。
  • Mystery Blocksworld One Shot: 准确率41.6%,执行时间82.03秒。
  • Randomized Mystery Blocksworld Zero Shot: 准确率37.3%,执行时间111.11秒。

重要数据与结论:

  • o1模型在PlanBench上的表现超过了现有的LLMs,但仍未达到最优。
  • 在不同的规划任务中,o1显示出了改进,但仍然存在一定的局限性。

推荐阅读指数:

★★★★☆

推荐理由:

  • 对于对AI规划能力和大型语言模型的最新进展感兴趣的研究者和从业者来说,这篇文章可以参考。
  • 文章讨论了LRMs的潜力和当前的局限性,对于理解未来AI的发展方向具有启发性。

2. Seeing Through Their Eyes: Evaluating Visual Perspective Taking in Vision Language Models

Authors: Gracjan G’oral, Alicja Ziarko, Michal Nauman, Maciej Wo{\l}czyk

https://arxiv.org/abs/2409.12969

通过他们的眼睛看:评估视觉语言模型中的视觉视角获取

摘要:

本文探讨了视觉语言模型(VLMs)是否具备理解他人视角的能力,这对于预测他人行为至关重要。研究者们开发了两个数据集Isle-Bricks和Isle-Dots来测试VLMs的视觉视角获取(VPT)技能,并评估了12种常用的VLMs。研究发现,当需要进行视角获取时,所有模型的性能都显著下降。

研究背景:

在现实世界中,理解他人的视角对于避免事故、有效协调行动或在社交环境中做出适当反应至关重要。尽管VLMs在许多任务上表现出色,但它们是否具备VPT能力尚不清楚。

技术挑战:

  • 如何评估VLMs在VPT任务上的表现。
  • 如何设计能够准确测试VPT技能的数据集。

创新点:

  • 提出了两个新的数据集Isle-Bricks和Isle-Dots,用于测试VPT技能。
  • 评估了12种不同的VLMs在VPT任务上的性能。

算法模型:

  • Isle-Bricks和Isle-Dots数据集。
  • 12种不同的VLMs,包括闭源和开源模型。

实验数据及实验效果:

  • 数据集:Isle-Bricks和Isle-Dots。
  • 实验结论:VLMs在需要视角获取的任务上性能显著下降,与物体检测任务的性能相关性弱。

推荐阅读指数:

★★★★☆

推荐理由:

这篇文章为理解视觉语言模型在处理视觉视角获取任务上的能力提供了新的视角,并提出了新的评估方法和数据集,对于VLMs的进一步研究和应用具有重要意义。

3. TACO-RL: Task Aware Prompt Compression Optimization with Reinforcement Learning

Authors: Shivam Shandilya, Menglin Xia, Supriyo Ghosh, Huiqiang Jiang, Jue

Zhang, Qianhui Wu, Victor R"uhle

https://arxiv.org/abs/2409.13035

TACO-RL:任务感知提示压缩优化与强化学习

摘要:

随着大型语言模型(LLMs)在各种应用中的普及,所需的提示大小不断增加,导致计算效率面临挑战。本文提出了一种基于强化学习的任务感知提示压缩方法,旨在通过最小化输入标记数量来降低推理成本,而不损害任务性能。

研究背景:

LLMs在自然语言处理任务上表现出色,但随着输入提示长度的增加,推理成本和延迟要求也在增加。

技术挑战:

  • 如何在不损失任务性能的前提下,减少输入提示的长度。

创新点:

  • 提出了一种新的基于强化学习的提示压缩方法,通过任务特定的奖励信号来指导学习过程。

算法模型:

  • 基于Transformer的编码器模型。
  • 轻量级REINFORCE算法。


计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-26(下)+https://developer.aliyun.com/article/1628899

目录
相关文章
|
26天前
|
机器学习/深度学习 人工智能 人机交互
图形学领域的研究热点会给人工智能带来哪些挑战和机遇?
图形学中的一些研究热点,如 3D 模型生成与重建,需要大量的 3D 数据来训练模型,但 3D 数据的获取往往比 2D 图像数据更困难、成本更高。而且,3D 数据的多样性和复杂性也使得数据的标注和预处理工作更加繁琐,这对人工智能的数据处理能力提出了更高要求。例如,在训练一个能够生成高精度 3D 人体模型的人工智能模型时,需要大量不同姿态、不同体型的 3D 人体扫描数据,而这些数据的采集和整理是一项艰巨的任务.
|
10天前
|
人工智能 并行计算 算法
量子计算算法:超越经典计算机的边界
量子计算基于量子力学原理,利用量子位、量子叠加和量子纠缠等特性,实现并行计算和高效处理复杂问题。核心算法如Shor算法和Grover算法展示了量子计算在大数分解和搜索问题上的优势。尽管面临量子位稳定性和规模化等挑战,量子计算在化学模拟、优化问题和人工智能等领域展现出巨大潜力,预示着未来的广泛应用前景。
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
54 7
|
22天前
|
人工智能 自然语言处理 自动驾驶
技术与人性:探索人工智能伦理的边界####
本文深入探讨了人工智能技术飞速发展背景下,伴随而来的伦理挑战与社会责任。不同于传统摘要直接概述内容,本文摘要旨在引发读者对AI伦理问题的关注,通过提出而非解答的方式,激发对文章主题的兴趣。在智能机器逐渐融入人类生活的每一个角落时,我们如何确保技术的善意使用,保护个人隐私,避免偏见与歧视,成为亟待解决的关键议题。 ####
|
25天前
|
机器学习/深度学习 人工智能 机器人
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
|
21天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
70 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
21天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
63 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
21天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
64 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
26天前
|
机器学习/深度学习 人工智能 数据可视化
人工智能在图形学领域的研究热点有哪些?
AIGC:通过生成对抗网络(GAN)、变分自编码器(VAE)及其变体等技术,能够根据用户输入的文字描述、草图等生成高质量、高分辨率的图像,在艺术创作、游戏开发、广告设计等领域应用广泛。如OpenAI的DALL-E、Stable Diffusion等模型,可生成风格各异、内容丰富的图像,为创作者提供灵感和素材.
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度探索人工智能中的自然语言处理技术#### 一、
【10月更文挑战第28天】 本文旨在深入剖析人工智能领域中的自然语言处理(NLP)技术,探讨其发展历程、核心算法、应用现状及未来趋势。通过详尽的技术解读与实例分析,揭示NLP在智能交互、信息检索、内容理解等方面的变革性作用,为读者提供一幅NLP技术的全景图。 #### 二、
68 1