[大语言模型] LINFUSION:1个GPU,1分钟,16K图像

简介: [大语言模型] LINFUSION:1个GPU,1分钟,16K图像

1. 文章

LINFUSION: 1 GPU, 1 MINUTE, 16K IMAGE

摘要

本文介绍了一种新型的扩散模型LINFUSION,它能够在保持高分辨率图像生成性能的同时显著降低时间和内存复杂度。该模型采用了基于Transformer的UNet进行去噪,并且通过引入线性注意力机制替代了传统的自注意力操作,以解决高分辨率视觉内容生成中的挑战。研究者们从最近引入的具有线性复杂度的模型中获得灵感,提出了一种新的线性注意力范式,该范式可作为多种流行的线性令牌混合器的低秩近似。通过从预训练的StableDiffusion (SD)模型中初始化并进行知识蒸馏,LINFUSION在适度训练后即可达到或超过原始SD的性能,同时显著减少时间和内存复杂度。实验表明,LINFUSION能够生成高达16K分辨率的高分辨率图像,并且与预训练的SD组件(如ControlNet和IP-Adapter)高度兼容。

创新点

  1. 提出了一种新的线性注意力机制,作为传统自注意力方法的替代,以解决高分辨率图像生成中的时间和内存复杂度问题。
  2. 引入了注意力归一化和非因果推理两个关键特性,以增强高分辨率视觉生成性能。
  3. 通过知识蒸馏的方式,从预训练的StableDiffusion模型中初始化并优化LINFUSION,减少了训练成本并提高了与现有模型的兼容性。

算法模型

LINFUSION模型基于Stable Diffusion (SD),通过以下关键技术构建:

- 线性注意力机制:替代SD中的自注意力层,以线性复杂度处理空间令牌。

- 注意力归一化:确保不同输入规模下的总影响保持一致。

- 非因果推理:允许模型同时访问所有噪声空间令牌并基于整个输入生成去噪令牌。

- 知识蒸馏:从预训练的SD模型中转移知识,以优化LINFUSION模型。

实验效果

  • 生成速度和内存消耗:在8步去噪和单GPU情况下,与原始SD-v1.5相比,LINFUSION在不同分辨率下的生成速度更快,内存消耗更低。
  • 跨分辨率生成性能:在SD-v1.5、SD-v2.1和SD-XL上的实验表明,LINFUSION在零样本跨分辨率生成性能上令人满意,能够生成高达16K分辨率的图像。
  • 与预训练组件的兼容性:LINFUSION与SD的现有组件(如ControlNet和IP-Adapter)高度兼容,无需额外训练成本。
相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
4月前
|
机器学习/深度学习 人工智能 芯片
42_大语言模型的计算需求:从GPU到TPU
随着2025年大语言模型技术的持续突破和规模化应用,计算资源已成为推动AI发展的关键驱动力。从最初的CPU计算,到GPU加速,再到专用AI加速器的崛起,大语言模型的计算需求正在重塑全球数据中心的基础设施架构。当前,全球AI半导体市场规模预计在2027年将达到2380亿美元(基本情境)甚至4050亿美元(乐观情境),这一增长背后,是大语言模型对计算能力、内存带宽和能效比的极致追求。
|
弹性计算 API 数据库
大模型规模化落地,企业AIGC应用支持多个大语言模型(LLM)切换及GPU规划化管理(PAI-EAS + ADB-PG)
随着年初的ChatGPT引爆大语言模型市场, LLM的集中爆发,大部分企业已经完成了AIGC产品的调研,并进入第二阶段, 即寻求大规模落地的AIGC产品解决方案。本文介绍了如何企业规模化大语言模型落地,支持多个模型的快速使用,包括通义千问-7b,ChatGLM-6b,Llama2-7b ,Llama2-13b,百川-13b和Falcon-7b。
大模型规模化落地,企业AIGC应用支持多个大语言模型(LLM)切换及GPU规划化管理(PAI-EAS + ADB-PG)
|
弹性计算 API 数据库
规模化落地AIGC应用,支持多个大语言模型(LLM)切换及GPU规划化管理(PAI-EAS + ADB-PG)
随着年初的ChatGPT引爆大语言模型市场, LLM的集中爆发,大部分企业已经完成了AIGC产品的调研,并进入第二阶段, 即寻求大规模落地的AIGC产品解决方案。本文介绍了如何企业规模化大语言模型落地,支持多个模型的快速使用,包括通义千问-7b,ChatGLM-6b,Llama2-7b 和 Llama2-13b。
2583 0
|
数据安全/隐私保护 异构计算 Python
GPU云服务器运行图像篡改检测代码训练模型-小记
GPU云服务器运行图像篡改检测代码训练模型-小记
482 0
|
人工智能 自然语言处理 计算机视觉
消费级GPU可用,文本转图像开源新模型Stable Diffusion生成宇宙变迁大片
消费级GPU可用,文本转图像开源新模型Stable Diffusion生成宇宙变迁大片
302 0
|
4月前
|
人工智能 算法 调度
阿里云ACK托管集群Pro版共享GPU调度操作指南
本文介绍在阿里云ACK托管集群Pro版中,如何通过共享GPU调度实现显存与算力的精细化分配,涵盖前提条件、使用限制、节点池配置及任务部署全流程,提升GPU资源利用率,适用于AI训练与推理场景。
400 1
|
4月前
|
人工智能 城市大脑 运维
喜讯!阿里云国产异构GPU云平台技术荣获“2025算力中国·年度重大成果”
2025年8月23日,在工业和信息化部新闻宣传中心、中国信息通信研究院主办的2025中国算力大会上,阿里云与浙江大学联合研发的“国产异构GPU云平台关键技术与系统”荣获「算力中国·年度重大成果」。该评选旨在选拔出算力产业具有全局性突破价值的重大成果,是业内公认的技术创新“风向标”。
496 0
|
9月前
|
存储 机器学习/深度学习 数据库
阿里云服务器X86/ARM/GPU/裸金属/超算五大架构技术特点、场景适配参考
在云计算技术飞速发展的当下,云计算已经渗透到各个行业,成为企业数字化转型的关键驱动力。选择合适的云服务器架构对于提升业务效率、降低成本至关重要。阿里云提供了多样化的云服务器架构选择,包括X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等。本文将深入解析这些架构的特点、优势及适用场景,以供大家了解和选择参考。
1301 61
|
12月前
|
存储 机器学习/深度学习 人工智能
2025年阿里云GPU服务器租用价格、选型策略与应用场景详解
随着AI与高性能计算需求的增长,阿里云提供了多种GPU实例,如NVIDIA V100、A10、T4等,适配不同场景。2025年重点实例中,V100实例GN6v单月3830元起,适合大规模训练;A10实例GN7i单月3213.99元起,适用于混合负载。计费模式有按量付费和包年包月,后者成本更低。针对AI训练、图形渲染及轻量级推理等场景,推荐不同配置以优化成本和性能。阿里云还提供抢占式实例、ESSD云盘等资源优化策略,支持eRDMA网络加速和倚天ARM架构,助力企业在2025年实现智能计算的效率与成本最优平衡。 (该简介为原文内容的高度概括,符合要求的字符限制。)

热门文章

最新文章