部署DeepSeek但IDC GPU不足,阿里云ACK Edge虚拟节点来帮忙

简介: 部署DeepSeek但IDC GPU不足,阿里云ACK Edge虚拟节点来帮忙

阿里云ACK Edge集群采用云边一体化架构,云上托管Kubernetes控制面,接入IDC机器做为Kubernetes集群数据面节点。实现IDC机器的Kubernetes容器化管理,实现现有资源的利旧,提高应用的部署运维效率。


目前AI大模型业务快速发展,ACK Edge已经帮助大量客户管理IDC中GPU机器,使用容器快速部署AI大模型推理业务。但随着DeepSeek发布R1模型,模型对GPU的需求越来越高,DeepSeek R1使用MOE模型,最少需要8卡以上机型部署,另外,由于DeepSeek R1模型原生使用FP8训练,需要较新的GPU卡型以获得高性价比。这些都给IDC GPU资源提出了挑战,通过ACK Edge的虚拟节点,可以快速接入云上ACS Serverless GPU算力,部署运行DeepSeek推理服务。


本文介绍通过ACK Edge管理IDC GPU机器,通过ACK AI套件部署DeepSeek推理服务,优先在IDC GPU上运行推理Pod,当IDC GPU资源不足时,通过ACK Edge的虚拟节点,创建云上的ACS Serverless GPU算力运行DeepSeek推理Pod,满足业务扩展的需求,并实现成本优化。


基于ACK Edge与虚拟节点

弹性ACS Serverless GPU方案




本地IDC的资源与云上VPC专线打通;

将本地资源接入到ACK Edge,实现从云上对IDC的业务做统一管理和调度;

为业务配置自定义调度策略,优先调度到本地IDC资源,本地资源不足时再调度到云上虚拟节点;

为业务配置HPA,当达到资源阈值时,自动触发扩容。


方案优势


极致弹性:可以提供大规模秒极的弹性伸缩能力,快速应对流量高峰场景;

成本精细化:无需自购服务器,按量付费,成本透明可控;

丰富的弹性资源:支持CPU、GPU等不同的机型。

使用示例

准备环境


选择一个地域作为中心地域,在该地域下创建ACK Edge集群[1]

安装virtual-node组件。具体操作,请参见组件管理[5]

安装Kserve,请参见管理ack-kserve组件[6]

安装Arena,请参见配置Arena客户端[7]

部署监控组件并配置GPU监控指标,请基于GPU指标实现弹性伸缩[8]

创建专用网络的边缘节点池[9],并将IDC的资源添加到边缘节点池[10]中;


操作步骤


步骤一:准备DeepSeek-R1-Distill-Qwen-7B模型文件


1) 执行以下命令从ModelScope下载DeepSeek-R1-Distill-Qwen-7B模型。


git lfs install
GIT_LFS_SKIP_SMUDGE=1 git clone https://www.modelscope.cn/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.git
cd DeepSeek-R1-Distill-Qwen-7B/
git lfs pull


2)在OSS中创建目录,将模型上传至OSS。


关于ossutil工具的安装和使用方法,请参见安装ossutil[11]


ossutil mkdir oss://<your-bucket-name>/models/DeepSeek-R1-Distill-Qwen-7B
ossutil cp -r ./DeepSeek-R1-Distill-Qwen-7B oss://<your-bucket-name>/models/DeepSeek-R1-Distill-Qwen-7B


3)创建PV和PVC。为目标集群配置名为llm-mode的存储卷PV和存储声明PVC。具体操作,请参见静态挂载OSS存储卷[12]。以下为示例YAML:


apiVersion: v1
kind: Secret
metadata:
  name: oss-secret
stringData:
  akId: <your-oss-ak> # 配置用于访问OSS的AccessKey ID
  akSecret: <your-oss-sk> # 配置用于访问OSS的AccessKey Secret
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: llm-model
  labels:
    alicloud-pvname: llm-model
spec:
  capacity:
    storage: 30Gi 
  accessModes:
    - ReadOnlyMany
  persistentVolumeReclaimPolicy: Retain
  csi:
    driver: ossplugin.csi.alibabacloud.com
    volumeHandle: llm-model
    nodePublishSecretRef:
      name: oss-secret
      namespace: default
    volumeAttributes:
      bucket: <your-bucket-name> # bucket名称
      url: <your-bucket-endpoint> # Endpoint信息,推荐使用内网地址,如oss-cn-hangzhou-internal.aliyuncs.com
      otherOpts: "-o umask=022 -o max_stat_cache_size=0 -o allow_other"
      path: <your-model-path> # 本示例中为/models/DeepSeek-R1-Distill-Qwen-7B/
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: llm-model
spec:
  accessModes:
    - ReadOnlyMany
  resources:
    requests:
      storage: 30Gi
  selector:
    matchLabels:
      alicloud-pvname: llm-model


步骤二:创建自定义调度策略


配置调度优先级,优先调度到边缘节点池上,如果边缘节点池资源不足调度到virtual node上。


执行命令:kubectl create -f nginx-resoucepolicy.yaml。


apiVersion: scheduling.alibabacloud.com/v1alpha1
kind: ResourcePolicy
metadata:
  name: deepseek
  namespace: default
spec:
  selector:
    app: isvc.deepseek-predictor # 此处要与后续创建的Pod的label相关联。
  strategy: prefer
  units:
  - resource: ecs
    nodeSelector:
      alibabacloud.com/nodepool-id: np*********  #边缘节点池ID
  - resource: eci


步骤三:部署模型


1执行如下命令,查询集群中的节点情况。


kubectl get nodes -owide


预期输出:


NAME                            STATUS   ROLES    AGE     VERSION            INTERNAL-IP   EXTERNAL-IP   OS-IMAGE                                              KERNEL-VERSION           CONTAINER-RUNTIME
cn-hangzhou.10.4.0.25           Ready    <none>   10d     v1.30.7-aliyun.1   10.4.0.25     <none>        Alibaba Cloud Linux 3.2104 U11 (OpenAnolis Edition)   5.10.134-18.al8.x86_64   containerd://1.6.36
cn-hangzhou.10.4.0.26           Ready    <none>   10d     v1.30.7-aliyun.1   10.4.0.26     <none>        Alibaba Cloud Linux 3.2104 U11 (OpenAnolis Edition)   5.10.134-18.al8.x86_64   containerd://1.6.36
idc001                          Ready    <none>   31s     v1.30.7-aliyun.1   10.4.0.185    <none>        Alibaba Cloud Linux 3.2104 U11 (OpenAnolis Edition)   5.10.134-18.al8.x86_64   containerd://1.6.36
virtual-kubelet-cn-hangzhou-b   Ready    agent    7d21h   v1.30.7-aliyun.1   10.4.0.180    <none>        <unknown>                                             <unknown>                <unknown>


其中,有一个IDC节点(idc001)和一个虚拟节点(virtual-kubelet-cn-hangzhou-b)。该IDC节点有一张V100的GPU卡。


2执行下列命令,基于vLLM模型推理框架部署DeepSeek模型推理服务。


arena serve kserve \
    --name=deepseek \
    --annotation=k8s.aliyun.com/eci-use-specs=ecs.gn6e-c12g1.3xlarge \
    --annotation=k8s.aliyun.com/eci-vswitch=vsw-*********,vsw-********* \ 
    --image=kube-ai-registry.cn-shanghai.cr.aliyuncs.com/kube-ai/vllm:v0.6.6 \
    --gpus=1 \
    --cpu=4 \
    --memory=12Gi \
    --scale-metric=DCGM_CUSTOM_PROCESS_SM_UTIL \
    --scale-target=50 \
    --min-replicas=1  \ 
    --max-replicas=3  \ 
    --data=llm-model:/model/DeepSeek-R1-Distill-Qwen-7B \ 
    "vllm serve /model/DeepSeek-R1-Distill-Qwen-7B --port 8080 --trust-remote-code --served-model-name deepseek-r1 --max-model-len 32768 --gpu-memory-utilization 0.95 --enforce-eager --dtype=half"


预期输出:


WARNING: Kubernetes configuration file is group-readable. This is insecure. Location: /Users/bingchang/.kube/config
WARNING: Kubernetes configuration file is world-readable. This is insecure. Location: /Users/bingchang/.kube/config
horizontalpodautoscaler.autoscaling/deepseek-hpa created
horizontalpodautoscaler.autoscaling/deepseek-hpa created
INFO[0002] The Job deepseek has been submitted successfully
INFO[0002] You can run `arena serve get deepseek --type kserve -n default` to check the job status


3执行下列命令,查看推理服务详细信息。


arena serve get deepseek


预期输出:


Name:       deepseek
Namespace:  default
Type:       KServe
Version:    1
Desired:    1
Available:  1
Age:        1
mAddress:    http://deepseek-default.example.com
Port:       :80
GPU:        1


Instances:
  NAME                                 STATUS   AGE  READY  RESTARTS  GPU  NODE
  ----                                 ------   ---  -----  --------  ---  ----
  deepseek-predictor-6b9455f8c5-wl5lc  Running  1m   1/1    0         1    idc001


从结果可以看到,推理服务的业务Pod被调度到了IDC节点。


4部署完成后,可以直接请求服务来验证是够部署成功,请求的地址可以在KServe自动创建的Ingress资源详情中找到。


curl -H "Host: deepseek-default.example.com" -H "Content-Type: application/json" http://<idc-node-ip>:<ingress-svc-nodeport>/v1/chat/completions -d '{"model": "deepseek-r1", "messages": [{"role": "user", "content": "Say this is a test!"}], "max_tokens": 512, "temperature": 0.7, "top_p": 0.9, "seed": 10}'


预期输出:


{"id":"chatcmpl-efc1225ad2f33cc39a8ddbc4039a41b9","object":"chat.completion","created":1739861087,"model":"deepseek-r1","choices":[{"index":0,"message":{"role":"assistant","content":"Okay, so I need to figure out how to say \"This is a test!\" in Spanish. Hmm, I'm not super fluent in Spanish, but I know some basic phrases. Let me think about how to approach this.\n\nFirst, I remember that \"test\" is \"prueba\" in Spanish. So maybe I can start with \"Esto es una prueba.\" But I'm not sure if that's the best way to say it. Maybe there's a more common expression or a different structure.\n\nWait, I think there's a phrase that's commonly used in tests. Isn't it something like \"This is a test.\" or \"This is a quiz.\"? I think the Spanish equivalent would be \"Este es un test.\" That sounds more natural. Let me check if that makes sense.\n\nI can also think about how people use phrases in tests. Maybe they use \"This is the test\" or \"This is an exam.\" So perhaps \"Este es el test.\" or \"Este es el examen.\" I'm not sure which one is more appropriate.\n\nI should also consider the grammar. \"This is a test\" is a simple statement, so the subject is \"this\" (using \"este\"), the verb is \"is\" (using \"es\"), and the object is \"a test\" (using \"un test\"). So putting it together, it would be \"Este es un test.\"\n\nWait, but sometimes people use \"This is the test\" when referring to an important one, so maybe \"Este es el test.\" But I'm not entirely sure if that's the correct structure. Let me think about other similar phrases.\n\nI also recall that in some contexts, people might say \"This is a practice test\" or \"This is a sample test.\" But since the user just said \"This is a test,\" the most straightforward translation would be \"Este es un test.\"\n\nI should also consider if there are any idiomatic expressions or common phrases that are used in this context. For example, \"This is the test\" is often used to mean a significant exam or evaluation, so \"Este es el test\" might be more appropriate in that context.\n\nBut I'm a bit confused because I'm not 100% sure about the correct structure. Maybe I should look up some examples. Oh, wait, I can't look things up right now, so I'll have to rely on my memory.\n\nI think the basic structure is subject + verb + object. So \"this\" (this is \"este","tool_calls":[]},"logprobs":null,"finish_reason":"length","stop_reason":null}],"usage":{"prompt_tokens":11,"total_tokens":523,"completion_tokens":512,"prompt_tokens_details":null},"prompt_logprobs":null}


步骤四:模拟业务高峰请求,触发云上弹性


我们通过压测工具hey来模拟发送大量的请求到这个服务中。


hey -z 5m -c 5 \
-m POST -host deepseek-default.example.com \
-H "Content-Type: application/json" \
-d '{"model": "deepseek-r1", "messages": [{"role": "user", "content": "Say this is a test!"}], "max_tokens": 512, "temperature": 0.7, "top_p": 0.9, "seed": 10}' \
http://<idc-node-ip>:<ingress-svc-nodeport>/v1/chat/completions


由于请求太多,GPU使用率上升超过阈值,此时会触发Pod扩容。执行命令查看推理服务详情:


arena serve get deepseek


预期输出:


Name:       deepseek
Namespace:  default
Type:       KServe
Version:    1
Desired:    3
Available:  2
Age:        18m
Address:    http://deepseek-default.example.com
Port:       :80
GPU:        3


Instances:
  NAME                                 STATUS   AGE  READY  RESTARTS  GPU  NODE
  ----                                 ------   ---  -----  --------  ---  ----
  deepseek-predictor-6b9455f8c5-dtzdv  Running  1m   0/1    0         1    virtual-kubelet-cn-hangzhou-h
  deepseek-predictor-6b9455f8c5-wl5lc  Running  18m  1/1    0         1    idc001
  deepseek-predictor-6b9455f8c5-zmpg8  Running  5m   1/1    0         1    virtual-kubelet-cn-hangzhou-h


此时,在虚拟节点上扩容出了两个副本。

总结


ACK Edge采用云边一体化的云原生架构,为用户托管Kubernetes集群的控制面,支持纳管IDC资源、ENS资源、跨地域ECS资源等。在为用户降低分布式资源和业务管理复杂性的同时,能够与云上现有的弹性能力无缝融合,解决本地服务的弹性需求。ACK Edge与虚拟节点结合,能够更好低应对突发场景,更加精细化控制资源成本,保障业务的稳定运行。


相关文档:


[1] 创建ACK Edge集群

https://help.aliyun.com/zh/ack/ack-edge/user-guide/create-an-ack-edge-cluster-1


[2] 添加边缘节点

https://help.aliyun.com/zh/ack/ack-edge/user-guide/add-an-edge-node


[3] 虚拟节点管理

https://help.aliyun.com/zh/ack/ack-edge/user-guide/virtual-node-management


[4] 自定义弹性优先级调度

https://help.aliyun.com/zh/ack/ack-managed-and-ack-dedicated/user-guide/configure-priority-based-resource-scheduling


[5] ACK Edge集群组件管理

https://help.aliyun.com/zh/ack/ack-edge/user-guide/component-overview?spm=a2c4g.11186623.0.0.40a6637cQeYfzf


[6] 在ACK集群中部署和管理ack-kserve组件

https://help.aliyun.com/zh/ack/cloud-native-ai-suite/user-guide/installation-ack-kserve?spm=a2c4g.11186623.help-menu-85222.d_2_4_5_1.605e3186rU3j8a&scm=20140722.H_2784216._.OR_help-T_cn~zh-V_1


[7] 配置Arena客户端

https://help.aliyun.com/zh/ack/cloud-native-ai-suite/user-guide/install-arena#task-1917487


[8] 基于GPU指标实现弹性伸缩

https://help.aliyun.com/zh/ack/ack-managed-and-ack-dedicated/user-guide/enable-auto-scaling-based-on-gpu-metrics?spm=a2c4g.11186623.0.0.5c2963c5zsiWs4#section-hh4-ss2-qbu


[9] 创建和管理边缘节点池

https://help.aliyun.com/zh/ack/ack-edge/user-guide/edge-node-pool-management?spm=a2c4g.11186623.help-menu-85222.d_1_1_1.799a608dBO9wuh&scm=20140722.H_199462._.OR_help-T_cn~zh-V_1


[10] 添加边缘节点

https://help.aliyun.com/zh/ack/ack-edge/user-guide/add-an-edge-node?spm=a2c4g.11186623.help-menu-85222.d_1_2_1_0.61e68488cS5Gul


[11] 安装ossutil

https://help.aliyun.com/zh/oss/developer-reference/install-ossutil?spm=a2c4g.11186623.0.0.384b6557sdxlwN


[12] 静态挂载OSS存储卷

https://help.aliyun.com/zh/cs/user-guide/oss-child-node-1


/ END /

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
11天前
|
Kubernetes 安全 异构计算
K8S 部署 Deepseek 要 3 天?别逗了!Ollama+GPU Operator 1 小时搞定
最近一年我都在依赖大模型辅助工作,比如 DeepSeek、豆包、Qwen等等。线上大模型确实方便,敲几个字就能生成文案、写代码、做表格,极大提高了效率。但对于企业来说:公司内部数据敏感、使用外部大模型会有数据泄露的风险。
K8S 部署 Deepseek 要 3 天?别逗了!Ollama+GPU Operator 1 小时搞定
|
1月前
|
存储 Kubernetes 开发工具
使用ArgoCD管理Kubernetes部署指南
ArgoCD 是一款基于 Kubernetes 的声明式 GitOps 持续交付工具,通过自动同步 Git 存储库中的配置与 Kubernetes 集群状态,确保一致性与可靠性。它支持实时同步、声明式设置、自动修复和丰富的用户界面,极大简化了复杂应用的部署管理。结合 Helm Charts,ArgoCD 提供模块化、可重用的部署流程,显著减少人工开销和配置错误。对于云原生企业,ArgoCD 能优化部署策略,提升效率与安全性,是实现自动化与一致性的理想选择。
87 0
|
3天前
|
存储 机器学习/深度学习 算法
阿里云X86/ARM/GPU/裸金属/超算等五大服务器架构技术特点、场景适配与选型策略
在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、高性能计算可选,有的用户并不清楚他们之间有何区别。本文将深入解析这些架构的特点、优势及适用场景,帮助用户更好地根据实际需求做出选择。
|
28天前
|
存储 Kubernetes 监控
K8s集群实战:使用kubeadm和kuboard部署Kubernetes集群
总之,使用kubeadm和kuboard部署K8s集群就像回归童年一样,简单又有趣。不要忘记,技术是为人服务的,用K8s集群操控云端资源,我们不过是想在复杂的世界找寻简单。尽管部署过程可能遇到困难,但朝着简化复杂的目标,我们就能找到意义和乐趣。希望你也能利用这些工具,找到你的乐趣,满足你的需求。
171 33
|
29天前
|
Kubernetes 开发者 Docker
集群部署:使用Rancher部署Kubernetes集群。
以上就是使用 Rancher 部署 Kubernetes 集群的流程。使用 Rancher 和 Kubernetes,开发者可以受益于灵活性和可扩展性,允许他们在多种环境中运行多种应用,同时利用自动化工具使工作负载更加高效。
83 19
|
1月前
|
人工智能 安全 数据可视化
一键部署谷歌最新开源多模态AI模型 Gemma 3:单GPU性能碾压Llama!支持35+种语言
Gemma 3 是谷歌最新推出的开源多模态AI模型,支持超过35种语言,具备文本、图像及短视频处理能力,提供四种模型尺寸,优化单GPU性能,适用于多种AI应用场景。
353 8
一键部署谷歌最新开源多模态AI模型 Gemma 3:单GPU性能碾压Llama!支持35+种语言
|
1月前
|
存储 人工智能 固态存储
轻量级AI革命:无需GPU就能运算的DeepSeek-R1-1.5B模型及其低配部署指南
随着AI技术发展,大语言模型成为产业智能化的关键工具。DeepSeek系列模型以其创新架构和高效性能备受关注,其中R1-1.5B作为参数量最小的版本,适合资源受限场景。其部署仅需4核CPU、8GB RAM及15GB SSD,适用于移动对话、智能助手等任务。相比参数更大的R1-35B与R1-67B+,R1-1.5B成本低、效率高,支持数学计算、代码生成等多领域应用,是个人开发者和初创企业的理想选择。未来,DeepSeek有望推出更多小型化模型,拓展低资源设备的AI生态。
231 8
|
1月前
|
存储 测试技术 对象存储
使用容器服务ACK快速部署QwQ-32B模型并实现推理智能路由
阿里云最新发布的QwQ-32B模型,通过强化学习大幅度提升了模型推理能力。QwQ-32B模型拥有320亿参数,其性能可以与DeepSeek-R1 671B媲美。
|
2月前
|
存储 Kubernetes 测试技术
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
117 12
|
1月前
|
存储 安全 Serverless
阿里云再次被评IDC MarketScape: Worldwide Edge Delivery Service 重要玩家
阿里云再次被评IDC MarketScape: Worldwide Edge Delivery Service 重要玩家
下一篇
oss创建bucket