零基础入门金融风控之贷款违约预测Task3:特征工程

简介: 零基础入门金融风控之贷款违约预测Task3:特征工程

导入需要的包

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from tqdm import tqdm
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.preprocessing import MinMaxScaler
import xgboost as xgb
import lightgbm as lgb
from catboost import CatBoostRegressor
import warnings
from sklearn.model_selection import StratifiedKFold, KFold
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, log_loss
warnings.filterwarnings('ignore')

读取文件

data_train =pd.read_csv('./train.csv')
data_test_a = pd.read_csv('./testA.csv')
特征预处理

首先我们查找出数据中的对象特征和数值特征

对数据需要有一定了解

numerical_fea = list(data_train.select_dtypes(exclude=['object']).columns)
category_fea = list(filter(lambda x: x not in numerical_fea,list(data_train.columns)))
label = 'isDefault'
numerical_fea.remove(label)

数据大概了解

data_train.info()
• 1
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 800000 entries, 0 to 799999
Data columns (total 47 columns):
id                    800000 non-null int64
loanAmnt              800000 non-null float64
term                  800000 non-null int64
interestRate          800000 non-null float64
installment           800000 non-null float64
grade                 800000 non-null object
subGrade              800000 non-null object
employmentTitle       799999 non-null float64
employmentLength      753201 non-null object
homeOwnership         800000 non-null int64
annualIncome          800000 non-null float64
verificationStatus    800000 non-null int64
issueDate             800000 non-null object
isDefault             800000 non-null int64
purpose               800000 non-null int64
postCode              799999 non-null float64
regionCode            800000 non-null int64
dti                   799761 non-null float64
delinquency_2years    800000 non-null float64
ficoRangeLow          800000 non-null float64
ficoRangeHigh         800000 non-null float64
openAcc               800000 non-null float64
pubRec                800000 non-null float64
pubRecBankruptcies    799595 non-null float64
revolBal              800000 non-null float64
revolUtil             799469 non-null float64
totalAcc              800000 non-null float64
initialListStatus     800000 non-null int64
applicationType       800000 non-null int64
earliesCreditLine     800000 non-null object
title                 799999 non-null float64
policyCode            800000 non-null float64
n0                    759730 non-null float64
n1                    759730 non-null float64
n2                    759730 non-null float64
n2.1                  759730 non-null float64
n4                    766761 non-null float64
n5                    759730 non-null float64
n6                    759730 non-null float64
n7                    759730 non-null float64
n8                    759729 non-null float64
n9                    759730 non-null float64
n10                   766761 non-null float64
n11                   730248 non-null float64
n12                   759730 non-null float64
n13                   759730 non-null float64
n14                   759730 non-null float64
dtypes: float64(33), int64(9), object(5)
memory usage: 286.9+ MB
#查看数值的特征
numerical_fea
['id',
 'loanAmnt',
 'term',
 'interestRate',
 'installment',
 'employmentTitle',
 'homeOwnership',
 'annualIncome',
 'verificationStatus',
 'purpose',
 'postCode',
 'regionCode',
 'dti',
 'delinquency_2years',
 'ficoRangeLow',
 'ficoRangeHigh',
 'openAcc',
 'pubRec',
 'pubRecBankruptcies',
 'revolBal',
 'revolUtil',
 'totalAcc',
 'initialListStatus',
 'applicationType',
 'title',
 'policyCode',
 'n0',
 'n1',
 'n2',
 'n2.1',
 'n4',
 'n5',
 'n6',
 'n7',
 'n8',
 'n9',
 'n10',
 'n11',
 'n12',
 'n13',
 'n14']
缺失值处理
  • 把所有缺失值替换成指定值
  • 用上面值填充ffill
  • 用下面值填充bfill
#查看缺失值情况
data_train.isnull().sum()
id                        0
loanAmnt                  0
term                      0
interestRate              0
installment               0
grade                     0
subGrade                  0
employmentTitle           1
employmentLength      46799
homeOwnership             0
annualIncome              0
verificationStatus        0
issueDate                 0
isDefault                 0
purpose                   0
postCode                  1
regionCode                0
dti                     239
delinquency_2years        0
ficoRangeLow              0
ficoRangeHigh             0
openAcc                   0
pubRec                    0
pubRecBankruptcies      405
revolBal                  0
revolUtil               531
totalAcc                  0
initialListStatus         0
applicationType           0
earliesCreditLine         0
title                     1
policyCode                0
n0                    40270
n1                    40270
n2                    40270
n2.1                  40270
n4                    33239
n5                    40270
n6                    40270
n7                    40270
n8                    40271
n9                    40270
n10                   33239
n11                   69752
n12                   40270
n13                   40270
n14                   40270
dtype: int64

这里我们可以平均值填充也可以众数。注意mode方法。

#这里的mode方法是去每一列的众数
data_train[category_fea].mode()
grade subGrade employmentLength issueDate earliesCreditLine
0 B C1 10+ years 2016-03-01 Aug-2001
#按照平均数填充数值型特征
data_train[numerical_fea] = data_train[numerical_fea].fillna(data_train[numerical_fea].median())
data_test_a[numerical_fea] = data_test_a[numerical_fea].fillna(data_train[numerical_fea].median())
#按照众数填充类别型特征
data_train[category_fea] = data_train[category_fea].fillna(data_train[category_fea].mode())
data_test_a[category_fea] = data_test_a[category_fea].fillna(data_train[category_fea].mode())
data_train.isnull().sum()
id                        0
loanAmnt                  0
term                      0
interestRate              0
installment               0
grade                     0
subGrade                  0
employmentTitle           0
employmentLength      46799
homeOwnership             0
annualIncome              0
verificationStatus        0
issueDate                 0
isDefault                 0
purpose                   0
postCode                  0
regionCode                0
dti                       0
delinquency_2years        0
ficoRangeLow              0
ficoRangeHigh             0
openAcc                   0
pubRec                    0
pubRecBankruptcies        0
revolBal                  0
revolUtil                 0
totalAcc                  0
initialListStatus         0
applicationType           0
earliesCreditLine         0
title                     0
policyCode                0
n0                        0
n1                        0
n2                        0
n2.1                      0
n4                        0
n5                        0
n6                        0
n7                        0
n8                        0
n9                        0
n10                       0
n11                       0
n12                       0
n13                       0
n14                       0
dtype: int64
#查看类别特征
category_fea
['grade', 'subGrade', 'employmentLength', 'issueDate', 'earliesCreditLine']
时间格式处理
#转化成时间格式
for data in [data_train, data_test_a]:
    data['issueDate'] = pd.to_datetime(data['issueDate'],format='%Y-%m-%d')
    startdate = datetime.datetime.strptime('2007-06-01', '%Y-%m-%d')
    #构造时间特征
    data['issueDateDT'] = data['issueDate'].apply(lambda x: x-startdate).dt.days
data_train['employmentLength'].value_counts(dropna=False).sort_index()
1 year        52489
10+ years    262753
2 years       72358
3 years       64152
4 years       47985
5 years       50102
6 years       37254
7 years       35407
8 years       36192
9 years       30272
< 1 year      64237
NaN           46799
Name: employmentLength, dtype: int64
对象特征转化数值特征
def employmentLength_to_int(s):
    if pd.isnull(s):
        return s
    else:
        return np.int8(s.split()[0])
for data in [data_train, data_test_a]:
    data['employmentLength'].replace(to_replace='10+ years', value='10 years', inplace=True)
    data['employmentLength'].replace('< 1 year', '0 years', inplace=True)
    data['employmentLength'] = data['employmentLength'].apply(employmentLength_to_int)
data['employmentLength'].value_counts(dropna=False).sort_index()
0.0     15989
1.0     13182
2.0     18207
3.0     16011
4.0     11833
5.0     12543
6.0      9328
7.0      8823
8.0      8976
9.0      7594
10.0    65772
NaN     11742
Name: employmentLength, dtype: int64

sample方法随机取这一列的5个值

data_train['earliesCreditLine'].sample(5)
• 1
250886    Nov-2000
528953    Sep-2000
703638    Jun-1989
80494     Mar-2009
715192    Dec-2003
Name: earliesCreditLine, dtype: object
for data in [data_train, data_test_a]:
    data['earliesCreditLine'] = data['earliesCreditLine'].apply(lambda s: int(s[-4:]))
类别特征处理
# 部分类别特征
cate_features = ['grade', 'subGrade', 'employmentTitle', 'homeOwnership', 'verificationStatus', 'purpose', 'postCode', 'regionCode', \
                 'applicationType', 'initialListStatus', 'title', 'policyCode']
for f in cate_features:
    print(f, '类型数:', data[f].nunique())
grade 类型数: 7
subGrade 类型数: 35
employmentTitle 类型数: 79282
homeOwnership 类型数: 6
verificationStatus 类型数: 3
purpose 类型数: 14
postCode 类型数: 889
regionCode 类型数: 51
applicationType 类型数: 2
initialListStatus 类型数: 2
title 类型数: 12058
policyCod,e 类型数: 1

等级这种固定的类别特征可以使用匿名函数或者map去换比较方便。

for data in [data_train, data_test_a]:
    data['grade'] = data['grade'].map({'A':1,'B':2,'C':3,'D':4,'E':5,'F':6,'G':7})

类型数在2之上,又不是高维稀疏的,且纯分类特征

# 类型数在2之上,又不是高维稀疏的,且纯分类特征
#get_dummies这个方法可以构建矩阵
for data in [data_train, data_test_a]:
    data = pd.get_dummies(data, columns=['subGrade', 'homeOwnership', 'verificationStatus', 'purpose', 'regionCode'], drop_first=True)
异常值处理
  • 当我们在发现异常值得时候,一定要分清楚是什么原因导致异常值的。如果这异常值并不代表一种规律性话,是偶然的现象,或者说你并不想研究这种偶然的现象,这时可以将其删除如果异常值存在且代表了一种真实存在的现象,那就不能随便删除。在现有的欺诈场景中很多时候欺诈数据本身相对于正常数据勒说就是异常的,我们要把这些异常点纳入,重新拟合模型,研究其规律。能用监督的用监督模型,不能用的还可以考虑用异常检测的算法来做。
  • 注意test的数据不能删
对于检查异常方法之一:均方差

基本上一些连续的数据都符合正态分布的

方法二:箱型图

将数据分成几个部分

def find_outliers_by_3segama(data,fea):
    data_std = np.std(data[fea])
    data_mean = np.mean(data[fea])
    outliers_cut_off = data_std * 3
    lower_rule = data_mean - outliers_cut_off
    upper_rule = data_mean + outliers_cut_off
    data[fea+'_outliers'] = data[fea].apply(lambda x:str('异常值') if x > upper_rule or x < lower_rule else '正常值')
    return data
data_train = data_train.copy()
for fea in numerical_fea:
    data_train = find_outliers_by_3segama(data_train,fea)
    print(data_train[fea+'_outliers'].value_counts())
    print(data_train.groupby(fea+'_outliers')['isDefault'].sum())
    print('*'*10)
正常值    800000
Name: id_outliers, dtype: int64
id_outliers
正常值    159610
Name: isDefault, dtype: int64
**********
正常值    800000
Name: loanAmnt_outliers, dtype: int64
loanAmnt_outliers
正常值    159610
Name: isDefault, dtype: int64
**********
正常值    800000
Name: term_outliers, dtype: int64
term_outliers
正常值    159610
Name: isDefault, dtype: int64
**********
正常值    794259
异常值      5741
Name: interestRate_outliers, dtype: int64
interestRate_outliers
异常值      2916
正常值    156694
Name: isDefault, dtype: int64
**********
正常值    792046
异常值      7954
Name: installment_outliers, dtype: int64
installment_outliers
异常值      2152
正常值    157458
Name: isDefault, dtype: int64
**********
正常值    800000
Name: employmentTitle_outliers, dtype: int64
employmentTitle_outliers
正常值    159610
Name: isDefault, dtype: int64
**********
正常值    799701
异常值       299
Name: homeOwnership_outliers, dtype: int64
homeOwnership_outliers
异常值        62
正常值    159548
Name: isDefault, dtype: int64
**********
正常值    793973
异常值      6027
Name: annualIncome_outliers, dtype: int64
annualIncome_outliers
异常值       756
正常值    158854
Name: isDefault, dtype: int64
**********
正常值    800000
Name: verificationStatus_outliers, dtype: int64
verificationStatus_outliers
正常值    159610
Name: isDefault, dtype: int64
**********
正常值    783003
异常值     16997
Name: purpose_outliers, dtype: int64
purpose_outliers
异常值      3635
正常值    155975
Name: isDefault, dtype: int64
**********
正常值    798931
异常值      1069
Name: postCode_outliers, dtype: int64
postCode_outliers
异常值       221
正常值    159389
Name: isDefault, dtype: int64
**********
正常值    799994
异常值         6
Name: regionCode_outliers, dtype: int64
regionCode_outliers
异常值         1
正常值    159609
Name: isDefault, dtype: int64
**********
正常值    798440
异常值      1560
Name: dti_outliers, dtype: int64
dti_outliers
异常值       466
正常值    159144
Name: isDefault, dtype: int64
**********
正常值    778245
异常值     21755
Name: delinquency_2years_outliers, dtype: int64
delinquency_2years_outliers
异常值      5089
正常值    154521
Name: isDefault, dtype: int64
**********
正常值    788261
异常值     11739
Name: ficoRangeLow_outliers, dtype: int64
ficoRangeLow_outliers
异常值       778
正常值    158832
Name: isDefault, dtype: int64
**********
正常值    788261
异常值     11739
Name: ficoRangeHigh_outliers, dtype: int64
ficoRangeHigh_outliers
异常值       778
正常值    158832
Name: isDefault, dtype: int64
**********
正常值    790889
异常值      9111
Name: openAcc_outliers, dtype: int64
openAcc_outliers
异常值      2195
正常值    157415
Name: isDefault, dtype: int64
**********
正常值    792471
异常值      7529
Name: pubRec_outliers, dtype: int64
pubRec_outliers
异常值      1701
正常值    157909
Name: isDefault, dtype: int64
**********
正常值    794120
异常值      5880
Name: pubRecBankruptcies_outliers, dtype: int64
pubRecBankruptcies_outliers
异常值      1423
正常值    158187
Name: isDefault, dtype: int64
**********
正常值    790001
异常值      9999
Name: revolBal_outliers, dtype: int64
revolBal_outliers
异常值      1359
正常值    158251
Name: isDefault, dtype: int64
**********
正常值    799948
异常值        52
Name: revolUtil_outliers, dtype: int64
revolUtil_outliers
异常值        23
正常值    159587
Name: isDefault, dtype: int64
**********
正常值    791663
异常值      8337
Name: totalAcc_outliers, dtype: int64
totalAcc_outliers
异常值      1668
正常值    157942
Name: isDefault, dtype: int64
**********
正常值    800000
Name: initialListStatus_outliers, dtype: int64
initialListStatus_outliers
正常值    159610
Name: isDefault, dtype: int64
**********
正常值    784586
异常值     15414
Name: applicationType_outliers, dtype: int64
applicationType_outliers
异常值      3875
正常值    155735
Name: isDefault, dtype: int64
**********
正常值    775134
异常值     24866
Name: title_outliers, dtype: int64
title_outliers
异常值      3900
正常值    155710
Name: isDefault, dtype: int64
**********
正常值    800000
Name: policyCode_outliers, dtype: int64
policyCode_outliers
正常值    159610
Name: isDefault, dtype: int64
**********
正常值    782773
异常值     17227
Name: n0_outliers, dtype: int64
n0_outliers
异常值      3485
正常值    156125
Name: isDefault, dtype: int64
**********
正常值    790500
异常值      9500
Name: n1_outliers, dtype: int64
n1_outliers
异常值      2491
正常值    157119
Name: isDefault, dtype: int64
**********
正常值    789067
异常值     10933
Name: n2_outliers, dtype: int64
n2_outliers
异常值      3205
正常值    156405
Name: isDefault, dtype: int64
**********
正常值    789067
异常值     10933
Name: n2.1_outliers, dtype: int64
n2.1_outliers
异常值      3205
正常值    156405
Name: isDefault, dtype: int64
**********
正常值    788660
异常值     11340
Name: n4_outliers, dtype: int64
n4_outliers
异常值      2476
正常值    157134
Name: isDefault, dtype: int64
**********
正常值    790355
异常值      9645
Name: n5_outliers, dtype: int64
n5_outliers
异常值      1858
正常值    157752
Name: isDefault, dtype: int64
**********
正常值    786006
异常值     13994
Name: n6_outliers, dtype: int64
n6_outliers
异常值      3182
正常值    156428
Name: isDefault, dtype: int64
**********
正常值    788430
异常值     11570
Name: n7_outliers, dtype: int64
n7_outliers
异常值      2746
正常值    156864
Name: isDefault, dtype: int64
**********
正常值    789625
异常值     10375
Name: n8_outliers, dtype: int64
n8_outliers
异常值      2131
正常值    157479
Name: isDefault, dtype: int64
**********
正常值    786384
异常值     13616
Name: n9_outliers, dtype: int64
n9_outliers
异常值      3953
正常值    155657
Name: isDefault, dtype: int64
**********
正常值    788979
异常值     11021
Name: n10_outliers, dtype: int64
n10_outliers
异常值      2639
正常值    156971
Name: isDefault, dtype: int64
**********
正常值    799434
异常值       566
Name: n11_outliers, dtype: int64
n11_outliers
异常值       112
正常值    159498
Name: isDefault, dtype: int64
**********
正常值    797585
异常值      2415
Name: n12_outliers, dtype: int64
n12_outliers
异常值       545
正常值    159065
Name: isDefault, dtype: int64
**********
正常值    788907
异常值     11093
Name: n13_outliers, dtype: int64
n13_outliers
异常值      2482
正常值    157128
Name: isDefault, dtype: int64
**********
正常值    788884
异常值     11116
Name: n14_outliers, dtype: int64
n14_outliers
异常值      3364
正常值    156246
Name: isDefault, dtype: int64
**********

删除异常值

#删除异常值
for fea in numerical_fea:
    data_train = data_train[data_train[fea+'_outliers']=='正常值']
    data_train = data_train.reset_index(drop=True)

通过除法映射到间隔均匀的分箱中

# 通过除法映射到间隔均匀的分箱中,每个分箱的取值范围都是loanAmnt/1000
data['loanAmnt_bin1'] = np.floor_divide(data['loanAmnt'], 1000)

通过对数函数映射到指数宽度分箱

## 通过对数函数映射到指数宽度分箱
data['loanAmnt_bin2'] = np.floor(np.log10(data['loanAmnt']))
data['loanAmnt_bin3'] = pd.qcut(data['loanAmnt'], 10, labels=False)
for col in ['grade', 'subGrade']: 
    temp_dict = data_train.groupby([col])['isDefault'].agg(['mean']).reset_index().rename(columns={'mean': col + '_target_mean'})
    temp_dict.index = temp_dict[col].values
    temp_dict = temp_dict[col + '_target_mean'].to_dict()
    data_train[col + '_target_mean'] = data_train[col].map(temp_dict)
    data_test_a[col + '_target_mean'] = data_test_a[col].map(temp_dict)
# 其他衍生变量 mean 和 std
for df in [data_train, data_test_a]:
    for item in ['n0','n1','n2','n2.1','n4','n5','n6','n7','n8','n9','n10','n11','n12','n13','n14']:
        df['grade_to_mean_' + item] = df['grade'] / df.groupby([item])['grade'].transform('mean')
        df['grade_to_std_' + item] = df['grade'] / df.groupby([item])['grade'].transform('std')
特征交互

想要丰富特征,特别是对于线性模型而言,除了分箱外,另一种方法是添加原始数据的交互特征和多项式特征。

#label-encode:subGrade,postCode,title
# 高维类别特征需要进行转换
for col in tqdm(['employmentTitle', 'postCode', 'title','subGrade']):
    le = LabelEncoder()
    le.fit(list(data_train[col].astype(str).values) + list(data_test_a[col].astype(str).values))
    data_train[col] = le.transform(list(data_train[col].astype(str).values))
    data_test_a[col] = le.transform(list(data_test_a[col].astype(str).values))
print('Label Encoding 完成')
100%|████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:12<00:00,  3.15s/it]
Label Encoding 完成
# 删除不需要的数据
for data in [data_train, data_test_a]:
    data.drop(['issueDate'], axis=1,inplace=True)
"纵向用缺失值上面的值替换缺失值"
data_train = data_train.fillna(axis=0,method='ffill')
x_train = data_train.drop(['isDefault','id'], axis=1)
#计算协方差
data_corr = x_train.corrwith(data_train.isDefault) #计算相关性
result = pd.DataFrame(columns=['features', 'corr'])
result['features'] = data_corr.index
result['corr'] = data_corr.values
# 也可以画图图
data_numeric = data_train[numerical_fea]
correlation = data_numeric.corr()
f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True,  vmax=0.8)
<matplotlib.axes._subplots.AxesSubplot at 0x23837a36f88>

features = [f for f in data_train.columns if f not in ['id','issueDate','isDefault'] and '_outliers' not in f]
x_train = data_train[features]
x_test = data_test_a[features]
y_train = data_train['isDefault']
def cv_model(clf, train_x, train_y, test_x, clf_name):
    folds = 5
    seed = 2020
    kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
    train = np.zeros(train_x.shape[0])
    test = np.zeros(test_x.shape[0])
    cv_scores = []
    for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)):
        print('************************************ {} ************************************'.format(str(i+1)))
        trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index]
        if clf_name == "lgb":
            train_matrix = clf.Dataset(trn_x, label=trn_y)
            valid_matrix = clf.Dataset(val_x, label=val_y)
            params = {
                'boosting_type': 'gbdt',
                'objective': 'binary',
                'metric': 'auc',
                'min_child_weight': 5,
                'num_leaves': 2 ** 5,
                'lambda_l2': 10,
                'feature_fraction': 0.8,
                'bagging_fraction': 0.8,
                'bagging_freq': 4,
                'learning_rate': 0.1,
                'seed': 2020,
                'nthread': 28,
                'n_jobs':24,
                'silent': True,
                'verbose': -1,
            }
            model = clf.train(params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], verbose_eval=200,early_stopping_rounds=200)
            val_pred = model.predict(val_x, num_iteration=model.best_iteration)
            test_pred = model.predict(test_x, num_iteration=model.best_iteration)
            
            # print(list(sorted(zip(features, model.feature_importance("gain")), key=lambda x: x[1], reverse=True))[:20])
                
        if clf_name == "xgb":
            train_matrix = clf.DMatrix(trn_x , label=trn_y)
            valid_matrix = clf.DMatrix(val_x , label=val_y)
            
            params = {'booster': 'gbtree',
                      'objective': 'binary:logistic',
                      'eval_metric': 'auc',
                      'gamma': 1,
                      'min_child_weight': 1.5,
                      'max_depth': 5,
                      'lambda': 10,
                      'subsample': 0.7,
                      'colsample_bytree': 0.7,
                      'colsample_bylevel': 0.7,
                      'eta': 0.04,
                      'tree_method': 'exact',
                      'seed': 2020,
                      'nthread': 36,
                      "silent": True,
                      }
            
            watchlist = [(train_matrix, 'train'),(valid_matrix, 'eval')]
            
            model = clf.train(params, train_matrix, num_boost_round=50000, evals=watchlist, verbose_eval=200, early_stopping_rounds=200)
            val_pred  = model.predict(valid_matrix, ntree_limit=model.best_ntree_limit)
            test_pred = model.predict(test_x , ntree_limit=model.best_ntree_limit)
                 
        if clf_name == "cat":
            params = {'learning_rate': 0.05, 'depth': 5, 'l2_leaf_reg': 10, 'bootstrap_type': 'Bernoulli',
                      'od_type': 'Iter', 'od_wait': 50, 'random_seed': 11, 'allow_writing_files': False}
            
            model = clf(iterations=20000, **params)
            model.fit(trn_x, trn_y, eval_set=(val_x, val_y),
                      cat_features=[], use_best_model=True, verbose=500)
            
            val_pred  = model.predict(val_x)
            test_pred = model.predict(test_x)
            
        train[valid_index] = val_pred
        test = test_pred / kf.n_splits
        cv_scores.append(roc_auc_score(val_y, val_pred))
        
        print(cv_scores)
        
    print("%s_scotrainre_list:" % clf_name, cv_scores)
    print("%s_score_mean:" % clf_name, np.mean(cv_scores))
    print("%s_score_std:" % clf_name, np.std(cv_scores))
    return train, test
def lgb_model(x_train, y_train, x_test):
    lgb_train, lgb_test = cv_model(lgb, x_train, y_train, x_test, "lgb")
    return lgb_train, lgb_test
def xgb_model(x_train, y_train, x_test):
    xgb_train, xgb_test = cv_model(xgb, x_train, y_train, x_test, "xgb")
    return xgb_train, xgb_test
def cat_model(x_train, y_train, x_test):
    cat_train, cat_test = cv_model(CatBoostRegressor, x_train, y_train, x_test, "cat")
lgb_train, lgb_test = lgb_model(x_train, y_train, x_test)
************************************ 1 ************************************
[LightGBM] [Warning] num_threads is set with nthread=28, will be overridden by n_jobs=24. Current value: num_threads=24
[LightGBM] [Warning] Unknown parameter: silent
Training until validation scores don't improve for 200 rounds
[200] training's auc: 0.749114  valid_1's auc: 0.729275
[400] training's auc: 0.764716  valid_1's auc: 0.730125
[600] training's auc: 0.778489  valid_1's auc: 0.729928
Early stopping, best iteration is:
[446] training's auc: 0.768137  valid_1's auc: 0.730186
[0.7301862239949224]
************************************ 2 ************************************
[LightGBM] [Warning] num_threads is set with nthread=28, will be overridden by n_jobs=24. Current value: num_threads=24
[LightGBM] [Warning] Unknown parameter: silent
Training until validation scores don't improve for 200 rounds
[200] training's auc: 0.748999  valid_1's auc: 0.731035
[400] training's auc: 0.764879  valid_1's auc: 0.731436
[600] training's auc: 0.778506  valid_1's auc: 0.730823
Early stopping, best iteration is:
[414] training's auc: 0.765823  valid_1's auc: 0.731478
[0.7301862239949224, 0.7314779648434573]
************************************ 3 ************************************
[LightGBM] [Warning] num_threads is set with nthread=28, will be overridden by n_jobs=24. Current value: num_threads=24
[LightGBM] [Warning] Unknown parameter: silent
Training until validation scores don't improve for 200 rounds
[200] training's auc: 0.748145  valid_1's auc: 0.73253
[400] training's auc: 0.763814  valid_1's auc: 0.733272
[600] training's auc: 0.777895  valid_1's auc: 0.733354
Early stopping, best iteration is:
[475] training's auc: 0.769215  valid_1's auc: 0.73355
[0.7301862239949224, 0.7314779648434573, 0.7335502065719879]
************************************ 4 ************************************
[LightGBM] [Warning] num_threads is set with nthread=28, will be overridden by n_jobs=24. Current value: num_threads=24
[LightGBM] [Warning] Unknown parameter: silent
Training until validation scores don't improve for 200 rounds
[200] training's auc: 0.749417  valid_1's auc: 0.727507
[400] training's auc: 0.765066  valid_1's auc: 0.728261
Early stopping, best iteration is:
[353] training's auc: 0.761647  valid_1's auc: 0.728349
[0.7301862239949224, 0.7314779648434573, 0.7335502065719879, 0.7283491938614568]
************************************ 5 ************************************
[LightGBM] [Warning] num_threads is set with nthread=28, will be overridden by n_jobs=24. Current value: num_threads=24
[LightGBM] [Warning] Unknown parameter: silent
Training until validation scores don't improve for 200 rounds
[200] training's auc: 0.748562  valid_1's auc: 0.73262
[400] training's auc: 0.764493  valid_1's auc: 0.733365
Early stopping, best iteration is:
[394] training's auc: 0.764109  valid_1's auc: 0.733381
[0.7301862239949224, 0.7314779648434573, 0.7335502065719879, 0.7283491938614568, 0.7333810157041901]
lgb_scotrainre_list: [0.7301862239949224, 0.7314779648434573, 0.7335502065719879, 0.7283491938614568, 0.7333810157041901]
lgb_score_mean: 0.7313889209952029
lgb_score_std: 0.001966415347937543

总结

最后在此声明特征工程是数据挖掘中最为重要的一部分,在往往比赛中,还是符合八二原则。占据着最为重要一部分。一定要好好学习

最后阐述一下特征选择

特征选择

特征选择技术可以精简掉无用的特征,以降低最终模型的复杂性,它的最终目的是得到一个简约模型,在不降低预测准确率或对预测准确率影响不大的情况下提高计算速度。特征选择不是为了减少训练时间(实际上,一些技术会增加总体训练时间),而是为了减少模型评分时间。

特征选择的方法:

1、 Filter

  • 方差选择法 :方差选择法中,先要计算各个特征的方差,然后根据设定的阈值,选择方差大于阈值的特征
  • 相关系数法(pearson 相关系数):Pearson 相关系数 皮尔森相关系数是一种最简单的,可以帮助理解特征和响应变量之间关系的方法,该方法衡量的是变量之间的线性相关性。 结果的取值区间为 [-1,1] , -1 表示完全的负相关, +1表示完全的正相关,0 表示没有线性相关。
  • 卡方检验:经典的卡方检验是用于检验自变量对因变量的相关性。 假设自变量有N种取值,因变量有M种取值,考虑自变量等于i且因变量等于j的样本频数的观察值与期望的差距。 其统计量如下: χ2=∑(A−T)2T,其中A为实际值,T为理论值
    (注:卡方只能运用在正定矩阵上,否则会报错Input X must be non-negative)
  • 互信息法: 经典的互信息也是评价自变量对因变量的相关性的。 在feature_selection库的SelectKBest类结合最大信息系数法可以用于选择特征

2、Wrapper (RFE)

  • 递归特征消除法:递归特征消除法 递归消除特征法使用一个基模型来进行多轮训练,每轮训练后,消除若干权值系数的特征,再基于新的特征集进行下一轮训练。

3、Embedded

  • 基于惩罚项的特征选择法: 基于惩罚项的特征选择法 使用带惩罚项的基模型,除了筛选出特征外,同时也进行了降维。在feature_selection库的SelectFromModel类结合逻辑回归模型可以用于选择特征
  • 基于树模型的特征选择:基于树模型的特征选择 树模型中GBDT也可用来作为基模型进行特征选择。 在feature_selection库的SelectFromModel类结合GBDT模型可以用于选择特征
结束语

本次任务三学习到不少知识,文章中如有不足之处,请务必指出,一定迅速改正。谢谢

相关文章
|
1月前
零基础入门金融风控之贷款违约预测的Task1:赛题理解
零基础入门金融风控之贷款违约预测的Task1:赛题理解
32 3
|
1月前
|
机器学习/深度学习 数据采集 存储
零基础入门金融风控之贷款违约预测Task4:建模和调参
零基础入门金融风控之贷款违约预测Task4:建模和调参
36 1
|
1月前
|
数据可视化 数据挖掘 数据处理
零基础入门金融风控之贷款违约预测的Task2:数据分析
零基础入门金融风控之贷款违约预测的Task2:数据分析
36 1
|
5月前
|
数据采集 机器学习/深度学习 数据可视化
使用决策树对金融贷款数据进行分析
使用决策树对金融贷款数据进行分析
|
6月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言用CPV模型的房地产信贷信用风险的度量和预测
R语言用CPV模型的房地产信贷信用风险的度量和预测
|
机器学习/深度学习 Python
基于LightGBM实现银行客户信用违约预测
基于LightGBM实现银行客户信用违约预测
203 1
|
机器学习/深度学习 数据采集 存储
数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(下篇)[xgboots/lightgbm/Catboost等模型]--模型融合:stacking、blending
数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(下篇)[xgboots/lightgbm/Catboost等模型]--模型融合:stacking、blending
|
机器学习/深度学习 算法 Python
贷款违约预测-Task1 赛题理解
贷款违约预测-Task1 赛题理解
528 1
|
机器学习/深度学习 数据采集 算法
数据挖掘实战:个人信贷违约预测(下)
大家好,我是东哥。本次分享一个数据挖掘实战项目:个人信贷违约预测,此项目对于想要学习信贷风控模型的同学非常有帮助,数据和源码在文末。
数据挖掘实战:个人信贷违约预测(下)
ML之RF:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测、推理)
ML之RF:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测、推理)
ML之RF:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测、推理)
下一篇
无影云桌面