使用决策树对金融贷款数据进行分析

简介: 使用决策树对金融贷款数据进行分析

使用决策树对金融贷款数据进行分析

在本篇博客中,我们将通过使用 Python、Pandas 和多种机器学习技术,对一组贷款数据进行全面分析。通过详细的步骤展示,你将学会如何进行数据预处理、可视化分析以及构建预测模型。

第一步:导入数据和必要的库

首先,我们需要导入数据并加载所需的库:

import pandas as pd
data = pd.read_csv("new_file.csv").sample(n=20000, random_state=42)

第二步:数据预处理

在数据预处理中,我们主要解决数据类型问题、处理缺失值以及删除无关特征:

data.drop(['id', 'url', 'desc', 'member_id'], axis=1, inplace=True)

可以通过指定 dtype 选项或者设置 low_memory=False 来解决此警告。

检查和处理缺失值和无限值

import numpy as np
inf_values = data[data == np.inf].values.any()
print(inf_values)

data.fillna(data.mean(), inplace=True)
data.interpolate(method='linear', inplace=True)

第三步:数据可视化

贷款金额分布

import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10, 6))
sns.histplot(data['loan_amnt'], bins=30, kde=True, color='skyblue')
plt.title('贷款金额分布')
plt.xlabel('贷款金额')
plt.ylabel('频率')
plt.show()

信用等级分布

plt.figure(figsize=(10, 6))
data['grade'].value_counts().plot(kind='bar', color='lightgreen')
plt.title('信用等级分布')
plt.xlabel('信用等级')
plt.ylabel('频率')
plt.show()

按贷款状态划分的年收入分布

plt.figure(figsize=(10, 6))
sns.boxplot(x='loan_status', y='annual_inc', data=data)
plt.title('按贷款状态划分的年收入分布')
plt.xlabel('贷款状态')
plt.ylabel('年收入')
plt.show()


第四步:特征工程

处理日期特征

data['earliest_cr_line'] = pd.to_datetime(data['earliest_cr_line'])
data['issue_d'] = pd.to_datetime(data['issue_d'])
data['credit_hist'] = (data['issue_d'] - data['earliest_cr_line']).dt.days
data.drop(['earliest_cr_line', 'issue_d'], axis=1, inplace=True)

编码类别型特征

from sklearn.preprocessing import LabelEncoder
cat_cols = data.select_dtypes(include=['object']).columns

le = LabelEncoder()
for col in cat_cols:
    data[col] = le.fit_transform(data[col])

第五步:相关性分析

最后,我们通过热图来展示特征之间的相关性:

plt.figure(figsize=(12, 8))
corr = data.corr()
sns.heatmap(corr, cmap='coolwarm', annot=False)
plt.title('相关性热图')
plt.show()


第六步:划分训练集和测试集

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

X = data.drop('loan_status', axis=1)
y = data['loan_status']

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

第七步:构建和评估模型

我们使用决策树分类器来进行预测,并评估模型的性能:

from sklearn.metrics import accuracy_score, classification_report
from sklearn.tree import DecisionTreeClassifier

dt_model = DecisionTreeClassifier(random_state=42)
dt_model.fit(X_train, y_train)

y_pred = dt_model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)
print("分类报告:\n", classification_report(y_test, y_pred))



通过这些步骤,我们成功地对贷款数据进行了分析和建模,希望这篇教程能够帮助你更好地理解数据科学的工作流程。

相关文章
|
机器学习/深度学习 存储 Python
|
测试技术
jmeter性能指标分析
使用jmeter压测后,对各项指标进行分析
1543 0
|
9月前
|
传感器 安全 算法
【C语言】C语言可以做什么?
C语言因其高效、灵活和低级控制能力,被广泛应用于各个领域,从基础设施和科学计算到金融、交通和机器人技术。它在许多关键应用中展示了其不可替代的价值和广泛的适用性。
503 2
|
机器学习/深度学习 数据采集 算法
【机器学习】CART决策树算法的核心思想及其大数据时代银行贷款参考案例——机器认知外界的重要算法
【机器学习】CART决策树算法的核心思想及其大数据时代银行贷款参考案例——机器认知外界的重要算法
|
存储 弹性计算 安全
阿里云服务器ECS计算型实例规格族特点、适用场景、指标数据参考
阿里云服务器ECS提供了丰富的计算型实例规格族,专为满足不同场景下的高性能计算需求而设计。包括计算型实例规格族c8y、计算型实例规格族c7、计算型实例规格族c8i等热门计算型实例规格,以及网络增强型的c7nex、密集计算型的ic5等其他计算型实例规格,每一种规格族都经过精心优化,确保在计算性能、存储效率、网络吞吐和安全特性等方面达到最佳平衡。本文将详细解析阿里云服务器ECS中的多个计算型实例规格族,包括它们的核心特点、适用场景、实例规格及具体指标数据,为用户在云计算资源选型时提供全面参考。
阿里云服务器ECS计算型实例规格族特点、适用场景、指标数据参考
|
存储 缓存 安全
Linux 设备驱动程序(三)(下)
Linux 设备驱动程序(三)
143 0
|
JavaScript Java 测试技术
基于SpringBoot+Vue+uniapp微信小程序的校园二手交易平台系统的详细设计和实现
基于SpringBoot+Vue+uniapp微信小程序的校园二手交易平台系统的详细设计和实现
210 1
|
消息中间件 NoSQL Kafka
日志收集平台项目nginx、kafka、zookeeper、filebeat搭建的基本配置(2)
日志收集平台项目nginx、kafka、zookeeper、filebeat搭建的基本配置(2)
|
机器学习/深度学习 数据采集 算法
【数据分享】简化的评分卡、Smote采样和随机森林的信贷违约预测
【数据分享】简化的评分卡、Smote采样和随机森林的信贷违约预测
|
算法 安全 数据安全/隐私保护
C/C++学习 -- 分组密算法(3DES算法)
C/C++学习 -- 分组密算法(3DES算法)
418 0