【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(下)

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(下)

【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(上):https://developer.aliyun.com/article/1622670

🍔 注意力机制实现步骤

4.1 步骤

  • 第一步: 根据注意力计算规则, 对Q,K,V进行相应的计算.
  • 第二步: 根据第一步采用的计算方法, 如果是拼接方法,则需要将Q与第二步的计算结果再进行拼接, 如果是转置点积, 一般是自注意力, Q与V相同, 则不需要进行与Q的拼接.
  • 第三步: 最后为了使整个attention机制按照指定尺寸输出, 使用线性层作用在第二步的结果上做一个线性变换, 得到最终对Q的注意力表示.

4.2 代码实现

  • 常见注意力机制的代码分析:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Attn(nn.Module):
    def __init__(self, query_size, key_size, value_size1, value_size2, output_size):
        """初始化函数中的参数有5个, query_size代表query的最后一维大小
           key_size代表key的最后一维大小, value_size1代表value的导数第二维大小, 
           value = (1, value_size1, value_size2)
           value_size2代表value的倒数第一维大小, output_size输出的最后一维大小"""
        super(Attn, self).__init__()
        # 将以下参数传入类中
        self.query_size = query_size
        self.key_size = key_size
        self.value_size1 = value_size1
        self.value_size2 = value_size2
        self.output_size = output_size
        # 初始化注意力机制实现第一步中需要的线性层.
        self.attn = nn.Linear(self.query_size + self.key_size, value_size1)
        # 初始化注意力机制实现第三步中需要的线性层.
        self.attn_combine = nn.Linear(self.query_size + value_size2, output_size)
    def forward(self, Q, K, V):
        """forward函数的输入参数有三个, 分别是Q, K, V, 根据模型训练常识, 输入给Attion机制的
           张量一般情况都是三维张量, 因此这里也假设Q, K, V都是三维张量"""
        # 第一步, 按照计算规则进行计算, 
        # 我们采用常见的第一种计算规则
        # 将Q,K进行纵轴拼接, 做一次线性变化, 最后使用softmax处理获得结果
        attn_weights = F.softmax(
            self.attn(torch.cat((Q[0], K[0]), 1)), dim=1)
        # 然后进行第一步的后半部分, 将得到的权重矩阵与V做矩阵乘法计算, 
        # 当二者都是三维张量且第一维代表为batch条数时, 则做bmm运算
        attn_applied = torch.bmm(attn_weights.unsqueeze(0), V)
        # 之后进行第二步, 通过取[0]是用来降维, 根据第一步采用的计算方法, 
        # 需要将Q与第一步的计算结果再进行拼接
        output = torch.cat((Q[0], attn_applied[0]), 1)
        # 最后是第三步, 使用线性层作用在第三步的结果上做一个线性变换并扩展维度,得到输出
        # 因为要保证输出也是三维张量, 因此使用unsqueeze(0)扩展维度
        output = self.attn_combine(output).unsqueeze(0)
        return output, attn_weights
  • 调用:
query_size = 32
key_size = 32
value_size1 = 32
value_size2 = 64
output_size = 64
attn = Attn(query_size, key_size, value_size1, value_size2, output_size)
Q = torch.randn(1,1,32)
K = torch.randn(1,1,32)
V = torch.randn(1,32,64)
out = attn(Q, K ,V)
print(out[0])
print(out[1])
  • 输出效果:
tensor([[[ 0.4477, -0.0500, -0.2277, -0.3168, -0.4096, -0.5982,  0.1548,
          -0.0771, -0.0951,  0.1833,  0.3128,  0.1260,  0.4420,  0.0495,
          -0.7774, -0.0995,  0.2629,  0.4957,  1.0922,  0.1428,  0.3024,
          -0.2646, -0.0265,  0.0632,  0.3951,  0.1583,  0.1130,  0.5500,
          -0.1887, -0.2816, -0.3800, -0.5741,  0.1342,  0.0244, -0.2217,
           0.1544,  0.1865, -0.2019,  0.4090, -0.4762,  0.3677, -0.2553,
          -0.5199,  0.2290, -0.4407,  0.0663, -0.0182, -0.2168,  0.0913,
          -0.2340,  0.1924, -0.3687,  0.1508,  0.3618, -0.0113,  0.2864,
          -0.1929, -0.6821,  0.0951,  0.1335,  0.3560, -0.3215,  0.6461,
           0.1532]]], grad_fn=<UnsqueezeBackward0>)
tensor([[0.0395, 0.0342, 0.0200, 0.0471, 0.0177, 0.0209, 0.0244, 0.0465, 0.0346,
         0.0378, 0.0282, 0.0214, 0.0135, 0.0419, 0.0926, 0.0123, 0.0177, 0.0187,
         0.0166, 0.0225, 0.0234, 0.0284, 0.0151, 0.0239, 0.0132, 0.0439, 0.0507,
         0.0419, 0.0352, 0.0392, 0.0546, 0.0224]], grad_fn=<SoftmaxBackward>)
  • 更多有关注意力机制的应用我们将在案例中进行详尽的理解分析.

🍔 小结

  • 学习了什么是注意力计算规则:
  • 它需要三个指定的输入Q(query), K(key), V(value), 然后通过计算公式得到注意力的结果, 这个结果代表query在key和value作用下的注意力表示. 当输入的Q=K=V时, 称作自注意力计算规则.
  • 常见的注意力计算规则:
  • 将Q,K进行纵轴拼接, 做一次线性变化, 再使用softmax处理获得结果最后与V做张量乘法.
  • 将Q,K进行纵轴拼接, 做一次线性变化后再使用tanh函数激活, 然后再进行内部求和, 最后使用softmax处理获得结果再与V做张量乘法.
  • 将Q与K的转置做点积运算, 然后除以一个缩放系数, 再使用softmax处理获得结果最后与V做张量乘法.
  • 学习了什么是注意力机制:
  • 注意力机制是注意力计算规则能够应用的深度学习网络的载体, 同时包括一些必要的全连接层以及相关张量处理, 使其与应用网络融为一体. 使自注意力计算规则的注意力机制称为自注意力机制.
  • 注意力机制的作用:
  • 在解码器端的注意力机制: 能够根据模型目标有效的聚焦编码器的输出结果, 当其作为解码器的输入时提升效果. 改善以往编码器输出是单一定长张量, 无法存储过多信息的情况.
  • 在编码器端的注意力机制: 主要解决表征问题, 相当于特征提取过程, 得到输入的注意力表示. 一般使用自注意力(self-attention).
  • 注意力机制实现步骤:
  • 第一步: 根据注意力计算规则, 对Q,K,V进行相应的计算.
  • 第二步: 根据第一步采用的计算方法, 如果是拼接方法,则需要将Q与第二步的计算结果再进行拼接, 如果是转置点积, 一般是自注意力, Q与V相同, 则不需要进行与Q的拼接.
  • 第三步: 最后为了使整个attention机制按照指定尺寸输出, 使用线性层作用在第二步的结果上做一个线性变换, 得到最终对Q的注意力表示.
  • 学习并实现了一种常见的注意力机制的类Attn.

💘若能为您的学习之旅添一丝光亮,不胜荣幸💘

🐼期待您的宝贵意见,让我们共同进步共同成长🐼


相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的新篇章:从理论到实践的飞跃####
本文深入剖析了深度学习的最新进展,探讨了其背后的理论基础与实际应用之间的桥梁。通过实例展示了深度学习如何革新计算机视觉、自然语言处理等领域,并展望了其未来可能带来的颠覆性变化。文章旨在为读者提供一个清晰的视角,理解深度学习不仅是技术的飞跃,更是推动社会进步的重要力量。 ####
151 61
|
2月前
|
机器学习/深度学习 存储 人工智能
大数据中自然语言处理 (NLP)
【10月更文挑战第19天】
158 60
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(Natural Language Processing,简称NLP)
自然语言处理(NLP)是人工智能的分支,旨在让计算机理解、解释和生成人类语言。NLP的关键技术和应用包括语言模型、词嵌入、文本分类、命名实体识别、机器翻译、文本摘要、问答系统、情感分析、对话系统、文本生成和知识图谱等。随着深度学习的发展,NLP的应用日益广泛且效果不断提升。
|
17天前
|
机器学习/深度学习 自然语言处理 并行计算
探索深度学习与自然语言处理的最新进展
探索深度学习与自然语言处理的最新进展
40 2
|
17天前
|
机器学习/深度学习 边缘计算 人工智能
探索深度学习与自然语言处理的最新进展
探索深度学习与自然语言处理的最新进展
30 1
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(NLP)是AI的重要分支,旨在让计算机理解人类语言
自然语言处理(NLP)是AI的重要分支,旨在让计算机理解人类语言。本文探讨了深度学习在NLP中的应用,包括其基本任务、优势、常见模型及具体案例,如文本分类、情感分析等,并讨论了Python的相关工具和库,以及面临的挑战和未来趋势。
41 1
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习与自然语言处理的最新进展
深度学习与自然语言处理的最新进展
|
26天前
|
机器学习/深度学习 自然语言处理 监控
探索深度学习在自然语言处理中的应用与挑战
本文深入分析了深度学习技术在自然语言处理(NLP)领域的应用,并探讨了当前面临的主要挑战。通过案例研究,展示了如何利用神经网络模型解决文本分类、情感分析、机器翻译等任务。同时,文章也指出了数据稀疏性、模型泛化能力以及计算资源消耗等问题,并对未来的发展趋势进行了展望。
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习与自然语言处理的最新进展
探索深度学习与自然语言处理的最新进展
36 0
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习与自然语言处理的前沿技术:Transformer模型的深度解析
探索深度学习与自然语言处理的前沿技术:Transformer模型的深度解析
47 0