【C++篇】C++类与对象深度解析(四):初始化列表、类型转换与static成员详解1

简介: 【C++篇】C++类与对象深度解析(四):初始化列表、类型转换与static成员详解

C++类与对象超详细入门指南

前言

💬 欢迎讨论:如果你在学习过程中有任何问题或想法,欢迎在评论区留言,我们一起交流学习。你的支持是我继续创作的动力!

👍 点赞、收藏与分享:觉得这篇文章对你有帮助吗?别忘了点赞、收藏并分享给更多的小伙伴哦!你们的支持是我不断进步的动力!

🚀 分享给更多人:如果你觉得这篇文章对你有帮助,欢迎分享给更多对C++感兴趣的朋友,让我们一起进步!

1. 初始化列表——再谈构造函数


1.1 初始化成员变量的方式

初始化列表 是构造函数中用于初始化类成员变量的一种特殊机制。与在构造函数体中直接赋值不同,初始化列表可以提高效率,尤其是对于某些特定类型的成员变量,它是唯一可行的初始化方式。

1.1.1 构造函数内部赋值 vs 初始化列表

在C++中,我们有两种主要方式来初始化类的成员变量:

  • 构造函数内部赋值:在构造函数体内给成员变量赋值。
    例如:
class A {
public:
    A(int x) {
        this->_x = x;  // 在构造函数体内赋值
    }
private:
    int _x;
};

初始化列表赋值:在构造函数的初始化列表中直接对成员变量进行初始化。

例如:

class A {
public:
    A(int x) : _x(x) {  // 使用初始化列表赋值
    }
private:
    int _x;
};
1.1.2 两者的区别
  • 内置类型(如 int:对于内置类型,使用初始化列表和在构造函数体内赋值在效率上几乎没有差别。内置类型没有构造函数,也不会进行隐式初始化(即它们可能持有垃圾值)。构造函数体内赋值或初始化列表赋值都只进行一次操作。因此,选择哪种方式主要是基于代码的清晰性和一致性。
  • 类类型:对于类类型的成员变量,如果没有使用初始化列表,成员变量会先调用默认构造函数进行初始化,然后在构造函数体内再赋值。这样就相当于进行了两次操作::一次初始化,一次赋值。而使用初始化列表时,成员变量只会被初始化一次,效率更高。
  • 例如,考虑如下代码:
class Member {
public:
    Member(int value = 5) : _value(value) {}
private:
    int _value;
};

class A {
public:
    A(int x) {
        _member = Member(x);  // 先默认构造后再赋值
    }
private:
    Member _member;
};

上面代码中,_member 会首先调用 Member 类的默认构造函数,然后再在构造函数体内通过赋值进行重新初始化。

而如果使用初始化列表:

class A {
public:
    A(int x) : _member(x) {  // 直接通过初始化列表初始化
    }
private:
    Member _member;
};
  • _member 只会被初始化一次,避免了不必要的性能开销。
  • 特殊情况:某些成员变量,例如常量 (const)、引用类型 (reference) 或没有默认构造函数的对象,必须通过初始化列表进行初始化,否则编译器会报错。
1.1.3 为什么要使用初始化列表
  • 效率:如前所述,初始化列表避免了成员变量的二次初始化,特别是在类类型成员中,性能优势更为明显。
  • 必要性某些类型的成员变量,如 const、引用类型,或没有默认构造函数的类成员,必须通过初始化列表进行初始化,否则编译器无法自动处理这些成员的初始化。
1.1.4 示例
class Time {
public:
    Time(int hour) : _hour(hour) {
        cout << "Time() called" << endl;
    }
private:
    int _hour;
};

在这个例子中,Time 类的构造函数使用了初始化列表,将传入的参数 hour 直接赋值给成员变量 _hour。这样,_hour 在对象构造时就被初始化,而不需要在构造函数体内赋值。


1.2 初始化列表的语法

语法结构:初始化列表的使用方式是在构造函数名后跟一个冒号,接着是一个以逗号分隔的成员变量列表,每个成员变量后面紧跟括号中的初始值或表达式。

基本语法格式

ClassName(参数列表) : 成员变量1(初始值), 成员变量2(初始值), ... {
    // 构造函数体
}
1.2.1 示例:
class MyClass {
public:
    MyClass(int a, int b) : _a(a), _b(b) {
        // 构造函数体
    }
private:
    int _a;
    int _b;
};

在这里,_a 被初始化为 a_b 被初始化为 b


1.3 引用成员变量、const成员变量的初始化

有些成员变量,比如引用类型常量类型,只能通过初始化列表进行初始化。

1.3.1 引用类型成员的初始化

引用类型成员变量在 C++ 中必须在声明时被初始化,不能在构造函数体内赋值,必须使用初始化列表。

class MyClass {
public:
    MyClass(int& ref) : _ref(ref) {
        // _ref 是引用类型,必须在初始化列表中初始化
    }
private:
    int& _ref;
};
1.3.2 const成员变量的初始化

常量成员变量 (const) 也必须在对象创建时初始化,之后不能修改。因此也必须在初始化列表中进行初始化。

class MyClass {
public:
    MyClass(int n) : _n(n) {
        // _n 是 const 类型,必须在初始化列表中初始化
    }
private:
    const int _n;
};

1.4 没有默认构造函数的类类型变量

如果一个类的成员变量是另一个没有默认构造函数的类类型变量,它也必须在初始化列表中进行初始化。

1.4.1 示例
class Time {
public:
    Time(int hour) : _hour(hour) {}
private:
    int _hour;
};

class Date {
public:
    Date(int year, int month, int day) : _year(year), _month(month), _day(day), _t(12) {
        // _t 是 Time 类型,必须在初始化列表中调用 Time 的构造函数
    }
private:
    int _year;
    int _month;
    int _day;
    Time _t;  // Time 没有默认构造函数
};

1.5 成员变量默认值的使用 (C++11)

C++11 引入了成员变量默认值的概念。可以在类的声明中为成员变量提供默认值,这些默认值将在没有通过初始化列表显式初始化时使用。

class MyClass {
public:
    MyClass() : _b(2) {  // _a 使用默认值1
        // 构造函数体
    }
private:
    int _a = 1;  // 默认值
    int _b;
};

1.6 初始化顺序

尽管初始化列表中的成员可以按任何顺序出现,但成员变量的初始化顺序是按照它们在类中声明的顺序进行的,而不是它们在初始化列表中的顺序。

1.6.1 示例
class MyClass {
public:
    MyClass(int a, int b) : _b(b), _a(a) {
        // 尽管 _b 在初始化列表中先出现,但 _a 会首先被初始化
    }
private:
    int _a;
    int _b;
};

为了保持代码的一致性和可读性,建议初始化列表的顺序和成员变量声明的顺序一致。


1.7 初始化列表总结

  1. 每个构造函数都有初始化列表,即使你没有显式地写出它。
  2. 每个成员变量都必须被初始化,即使它没有在初始化列表中显式地被初始化。
  3. 对于引用类型常量没有默认构造函数的类类型成员,必须在初始化列表中进行初始化。
  4. C++11 允许在成员变量声明时提供默认值,这些默认值会在初始化列表中未显式初始化时使用。
  5. 初始化顺序取决于成员变量在类中的声明顺序,而不是它们在初始化列表中的顺序。

2. 类型转换详解

在C++中,类型转换(Type Conversion)是指将一种数据类型转换为另一种数据类型的过程。对于类而言,C++允许将内置类型类类型转换为其他类类型,这一功能在面向对象编程中非常有用。类型转换可以是显式的(explicit)或隐式的(implicit),并且它们涉及构造函数、转换运算符和explicit关键字。

2.1 内置类型转换为类类型

C++支持将内置类型(如intdouble等)隐式地转换为自定义的类类型。这是通过定义带有内置类型参数的构造函数来实现的。

2.1.1 隐式类型转换

在没有explicit关键字修饰构造函数的情况下,编译器会自动将符合构造函数参数类型的内置类型值隐式转换为类对象。

示例

class A {
public:
    A(int a1) : _a1(a1) {}

    void Print() {
        cout << _a1 << endl;
    }

private:
    int _a1;
};

int main() {
    A obj = 10;  // 隐式将 int 10 转换为 A 类型对象
    obj.Print();  // 输出: 10
}

在上面的代码中,整数 10 被隐式地转换为类 A 的对象,编译器自动调用了A的构造函数。可以直接通过A obj = 10;来创建对象,这是隐式类型转换的常见形式。

2.1.2 explicit 防止隐式转换

有时候,隐式类型转换会引发意想不到的错误或逻辑问题。为了防止这些错误,C++允许我们使用explicit关键字修饰构造函数,这样可以禁止该构造函数参与隐式转换。

示例

class A {
public:
    explicit A(int a1) : _a1(a1) {}

    void Print() {
        cout << _a1 << endl;
    }

private:
    int _a1;
};

int main() {
    // A obj = 10;  // 错误:explicit 阻止了隐式转换
    A obj(10);      // 正确:必须显式调用构造函数
    obj.Print();    // 输出: 10
}

在这个例子中,explicit关键字阻止了A obj = 10;的隐式类型转换,必须使用A obj(10);进行显式调用构造函数来创建对象。这种方式避免了潜在的类型转换混淆问题。


2.2 类类型之间的转换

C++也允许将一个类类型的对象隐式转换为另一个类类型。这通常通过类的构造函数来实现。例如,一个类可以通过接受另一个类类型对象的构造函数进行隐式转换。

2.2.1 类类型之间的隐式转换

在下面的例子中,B类通过构造函数接受一个A类对象,这样当我们将A类对象赋值给B类时,C++会自动进行隐式转换。

示例

 class A {
public:
    A(int a1) : _a1(a1) {}

    int Get() const {
        return _a1;
    }

private:
    int _a1;
};

class B {
public:
    B(const A& a) : _b(a.Get()) {}

    void Print() {
        cout << _b << endl;
    }

private:
    int _b;
};

int main() {
    A objA(10);
    B objB = objA;  // A 类型对象隐式转换为 B 类型对象
    objB.Print();   // 输出: 10
}

在这里,B类的构造函数接受一个A类对象,因此当我们将objA赋值给objB时,C++会隐式调用B的构造函数将A对象转换为B对象。

2.2.2 阻止类类型的隐式转换

与内置类型的隐式转换类似,我们也可以使用explicit关键字来防止类类型之间的隐式转换。如下所示:

class B {
public:
    explicit B(const A& a) : _b(a.Get()) {}

    void Print() {
        cout << _b << endl;
    }

private:
    int _b;
};

int main() {
    A objA(10);
    // B objB = objA;  // 错误:explicit 阻止了隐式转换
    B objB(objA);      // 正确:显式调用构造函数
    objB.Print();      // 输出: 10
}

在这个例子中,explicit关键字阻止了A对象隐式转换为B对象,必须显式调用B的构造函数。

【C++篇】C++类与对象深度解析(四):初始化列表、类型转换与static成员详解2:https://developer.aliyun.com/article/1617497

目录
相关文章
|
6月前
|
Java 开发者
重学Java基础篇—Java类加载顺序深度解析
本文全面解析Java类的生命周期与加载顺序,涵盖从加载到卸载的七个阶段,并深入探讨初始化阶段的执行规则。通过单类、继承体系的实例分析,明确静态与实例初始化的顺序。同时,列举六种触发初始化的场景及特殊场景处理(如接口初始化)。提供类加载完整流程图与记忆口诀,助于理解复杂初始化逻辑。此外,针对空指针异常等问题提出排查方案,并给出最佳实践建议,帮助开发者优化程序设计、定位BUG及理解框架机制。最后扩展讲解类加载器层次与双亲委派机制,为深入研究奠定基础。
230 0
|
6月前
|
存储 监控 安全
重学Java基础篇—类的生命周期深度解析
本文全面解析了Java类的生命周期,涵盖加载、验证、准备、解析、初始化、使用及卸载七个关键阶段。通过分阶段执行机制详解(如加载阶段的触发条件与技术实现),结合方法调用机制、内存回收保护等使用阶段特性,以及卸载条件和特殊场景处理,帮助开发者深入理解JVM运作原理。同时,文章探讨了性能优化建议、典型异常处理及新一代JVM特性(如元空间与模块化系统)。总结中强调安全优先、延迟加载与动态扩展的设计思想,并提供开发建议与进阶方向,助力解决性能调优、内存泄漏排查及框架设计等问题。
250 5
|
6月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
|
6月前
|
存储 编译器 C++
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。
|
6月前
|
编译器 C++
类和对象(下)C++
本内容主要讲解C++中的初始化列表、类型转换、静态成员、友元、内部类、匿名对象及对象拷贝时的编译器优化。初始化列表用于成员变量定义初始化,尤其对引用、const及无默认构造函数的类类型变量至关重要。类型转换中,`explicit`可禁用隐式转换。静态成员属类而非对象,受访问限定符约束。内部类是独立类,可增强封装性。匿名对象生命周期短,常用于临时场景。编译器会优化对象拷贝以提高效率。最后,鼓励大家通过重复练习提升技能!
|
10月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
262 2
|
6月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
610 29
|
6月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
179 4
|
6月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
6月前
|
移动开发 前端开发 JavaScript
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。

推荐镜像

更多
  • DNS