【Python篇】matplotlib超详细教程-由入门到精通(下篇)2

简介: 【Python篇】matplotlib超详细教程-由入门到精通(下篇)

【Python篇】matplotlib超详细教程-由入门到精通(下篇)1:https://developer.aliyun.com/article/1617468

7.4 自定义图例 (Legend)

除了基本的图例位置、字体大小和样式的设置,matplotlib 还提供了更多的自定义选项,帮助我们进一步控制图例的外观和表现形式。在数据可视化中,合理的图例能够帮助读者快速理解图表中的信息。

7.4.1 更改图例边框与透明度

我们可以通过 framealpha 设置图例的透明度,通过 edgecolor 设置边框颜色。

示例:修改图例边框颜色与透明度

import matplotlib.pyplot as plt

# 定义数据
x = [1, 2, 3, 4, 5]
y1 = [1, 4, 9, 16, 25]
y2 = [2, 3, 5, 7, 11]

# 创建图表
plt.plot(x, y1, label='数据 1', color='blue')
plt.plot(x, y2, label='数据 2', color='green')

# 自定义图例的样式
plt.legend(loc='upper left', fontsize=12, frameon=True, edgecolor='red', framealpha=0.5)

# 添加标题
plt.title('自定义图例边框颜色和透明度')

# 显示图表
plt.show()

解释:

  • edgecolor='red':将图例的边框设置为红色。
  • framealpha=0.5:将图例的背景设置为半透明,值越接近 1,透明度越低。

拓展:

  • 通过调节 framealpha,我们可以创建更柔和的图例,避免它遮挡住重要的图表内容。
  • edgecolor 可以帮助图例在复杂的背景图表中显得更加突出或和谐。

7.4.2 使用多个图例

有时候,我们的图表可能需要使用多个图例来区分不同的数据组。为了实现这一点,我们可以在同一张图表中放置多个图例。

示例:多图例展示

import matplotlib.pyplot as plt

# 定义数据
x = [1, 2, 3, 4, 5]
y1 = [1, 4, 9, 16, 25]
y2 = [2, 3, 5, 7, 11]
y3 = [10, 12, 14, 16, 18]

# 创建图表
line1, = plt.plot(x, y1, label='数据 1', color='blue')
line2, = plt.plot(x, y2, label='数据 2', color='green')

# 为第一个图例自定义样式并放置于图表的左上角
plt.legend(handles=[line1, line2], loc='upper left', title='主要数据')

# 再添加一个数据和图例
line3, = plt.plot(x, y3, label='数据 3', color='red')

# 使用 ax.legend() 来创建第二个图例,并放置于右上角
plt.gca().add_artist(plt.legend(handles=[line1, line2], loc='upper left'))
plt.legend(handles=[line3], loc='upper right', title='附加数据')

# 添加标题
plt.title('多图例展示示例')

# 显示图表
plt.show()

解释:

  • handles:指定要展示的线条对象,用于手动选择显示哪些数据系列。
  • add_artist():将第一个图例添加到当前的轴 (axes) 上,这样第二个图例可以独立添加。

拓展:

  • 多个图例的使用有助于在一张图表中展示大量数据时,避免混淆,保持数据的清晰和可读性。
  • 可以通过 add_artist() 方法将任意自定义的图例或其他元素添加到图表中。

7.4.3 动态更新图例

有时,在动态图表中,数据是动态变化的,图例可能需要根据数据的变化实时更新。我们可以通过动态调整图例的位置、内容和样式,使其与图表内容同步变化。

示例:动态更新图例

import matplotlib.pyplot as plt
import numpy as np
import time

# 初始化图表
plt.ion()  # 开启交互模式
fig, ax = plt.subplots()

x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)

line, = ax.plot(x, y, label='sin(x)')  # 初始图形及图例

legend = ax.legend(loc='upper right')  # 初始化图例

# 动态更新图表
for i in range(50):
    y = np.sin(x + i / 10.0)
    line.set_ydata(y)  # 更新 Y 轴数据
    ax.set_title(f"当前帧: {i}")  # 更新标题
    legend.set_title(f"帧数 {i}")  # 动态更新图例标题
    fig.canvas.draw()  # 重新绘制图表
    fig.canvas.flush_events()  # 刷新图表显示
    time.sleep(0.1)  # 模拟数据变化的时间间隔

plt.ioff()  # 关闭交互模式
plt.show()  # 显示最终图表

解释:

  • legend.set_title():动态更新图例的标题,随时间变化。
  • 动态图表和图例的更新通过 canvas.draw()flush_events() 来实现。

拓展:

  • 动态图表在展示时间序列数据、监控数据变化时非常有用。通过图例的动态更新,可以使图表更加直观,帮助观众理解图表中的每一帧数据。

7.5 设置图表的标题、轴标签、注释和样式

matplotlib 提供了全面的定制选项来设置图表的标题、坐标轴标签和注释。通过调整字体、颜色、大小等参数,我们可以让图表更加清晰易懂。

示例:自定义图表标题与坐标轴标签样式

import matplotlib.pyplot as plt

# 定义数据
x = [1, 2, 3, 4, 5]
y = [1, 4, 9, 16, 25]

# 创建图表
plt.plot(x, y)

# 自定义标题和坐标轴标签的样式
plt.title('自定义标题', fontsize=20, fontweight='bold', color='purple')
plt.xlabel('自定义 X 轴标签', fontsize=14, fontstyle='italic', color='blue')
plt.ylabel('自定义 Y 轴标签', fontsize=14, fontstyle='italic', color='red')

# 显示图表
plt.show()

解释:

  • fontsize:设置字体大小。
  • fontweight:设置字体的粗细(例如 bold 表示加粗)。
  • fontstyle:设置字体样式(例如 italic 表示斜体)。
  • color:设置字体颜色。


拓展:

  • 标题、轴标签和图例的样式定制可以帮助你创建更具个性化的图表,并且可以与企业的品牌风格保持一致。

7.6 多坐标轴图表

在一些数据可视化任务中,我们可能需要在一个图表中显示多种不同类型的数据,而这些数据的数值范围有很大差异。为了让不同数据能够清晰显示,我们可以在图表中使用多坐标轴。

示例:双 Y 轴图表

import matplotlib.pyplot as plt

# 定义数据
x = [1, 2, 3, 4, 5]
y1 = [1, 4, 9, 16, 25]  # 第一组数据
y2 = [100, 200, 300, 400, 500]  # 第二组数据

# 创建图表,绘制第一组数据
fig, ax1 = plt.subplots()

ax1.plot(x, y1, 'b-')  # 蓝色实线表示 y1 数据
ax1.set_xlabel('X 轴')  # 设置 X 轴标签
ax1.set_ylabel('Y1 轴', color='b')  # 设置 Y 轴标签
ax1.tick_params('y', colors='b')  # 设置 Y 轴刻度颜色

# 创建第二个 Y 轴,绘制第二组数据
ax2 = ax1.twinx()
ax2.plot(x, y2, 'r--')  # 红色虚线表示 y2 数据
ax2.set_ylabel('Y2 轴', color='r')  # 设置第二个 Y 轴标签
ax2.tick_params('y', colors='r')  # 设置第二个 Y 轴刻度颜色

# 添加标题
plt.title('双 Y 轴图表示例')

# 显示图表
plt.show()

解释:

  • ax1.twinx():创建一个共享 X 轴但有独立 Y 轴的图表。
  • tick_params('y', colors='b'):设置 Y 轴刻度颜色与线条颜色匹配。

拓展:

  • 这种多坐标轴图表在展示例如温度和湿度、价格和销量等数据时非常有用。通过不同的 Y 轴,我们可以更直观地查看数据变化趋势。


7.7 绘制 3D 图形

matplotlib 也支持 3D 图形的绘制,通过 mpl_toolkits.mplot3d 模块,我们可以轻松创建 3D 折线图、3D 散点图等。

示例:绘制 3D 折线图

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

# 创建 3D 图形对象
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

# 定义数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
z = np.sin(np.sqrt(x**2 + y**2))

# 绘制 3D 折线图
ax.plot(x, y, z)

# 设置标题和轴标签
ax.set_title('3D 折线图示例')
ax.set_xlabel('X 轴')
ax.set_ylabel('Y 轴')
ax.set_zlabel('Z 轴')

# 显示图表
plt.show()

解释:

  • projection='3d':指定绘制 3D 图形。
  • ax.plot(x, y, z):在三维坐标系中绘制折线图。
  • set_zlabel():设置 Z 轴标签。

拓展:

  • 3D 图表适用于展示多维度数据。你可以使用 plot_surface() 来绘制 3D 曲面,或者 scatter() 来绘制 3D 散点图。


7.9 创建动画

matplotlibanimation 模块可以用来创建简单的动画,特别是在数据动态变化的场景中,动画能够直观展示数据随时间变化的过程。

示例:创建简单动画

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.animation as animation

# 初始化图表
fig, ax = plt.subplots()
x = np.linspace(0, 2 * np.pi, 100)
line, = ax.plot(x, np.sin(x))

# 动画更新函数
def update(frame):
    line.set_ydata(np.sin(x + frame / 10.0))  # 更新 y 数据
    return line,

# 创建动画
ani = animation.FuncAnimation(fig, update, frames=100, interval=50, blit=True)

# 显示动画
plt.show()

解释:

  • FuncAnimation():创建动画,frames 表示动画的帧数,interval 表示每帧之间的间隔时间。
  • update():动画每一帧的更新函数,用于动态更新图表数据。

以上就是关于【Python篇】matplotlib超详细教程-由入门到精通(下篇)的内容啦,各位大佬有什么问题欢迎在评论区指正,或者私信我也是可以的啦,您的支持是我创作的最大动力!❤️

目录
相关文章
|
1天前
|
缓存 算法 数据处理
Python入门:9.递归函数和高阶函数
在 Python 编程中,函数是核心组成部分之一。递归函数和高阶函数是 Python 中两个非常重要的特性。递归函数帮助我们以更直观的方式处理重复性问题,而高阶函数通过函数作为参数或返回值,为代码增添了极大的灵活性和优雅性。无论是实现复杂的算法还是处理数据流,这些工具都在开发者的工具箱中扮演着重要角色。本文将从概念入手,逐步带你掌握递归函数、匿名函数(lambda)以及高阶函数的核心要领和应用技巧。
Python入门:9.递归函数和高阶函数
|
1天前
|
开发者 Python
Python入门:8.Python中的函数
### 引言 在编写程序时,函数是一种强大的工具。它们可以将代码逻辑模块化,减少重复代码的编写,并提高程序的可读性和可维护性。无论是初学者还是资深开发者,深入理解函数的使用和设计都是编写高质量代码的基础。本文将从基础概念开始,逐步讲解 Python 中的函数及其高级特性。
Python入门:8.Python中的函数
|
1天前
|
存储 SQL 索引
Python入门:7.Pythond的内置容器
Python 提供了强大的内置容器(container)类型,用于存储和操作数据。容器是 Python 数据结构的核心部分,理解它们对于写出高效、可读的代码至关重要。在这篇博客中,我们将详细介绍 Python 的五种主要内置容器:字符串(str)、列表(list)、元组(tuple)、字典(dict)和集合(set)。
Python入门:7.Pythond的内置容器
|
1天前
|
存储 索引 Python
Python入门:6.深入解析Python中的序列
在 Python 中,**序列**是一种有序的数据结构,广泛应用于数据存储、操作和处理。序列的一个显著特点是支持通过**索引**访问数据。常见的序列类型包括字符串(`str`)、列表(`list`)和元组(`tuple`)。这些序列各有特点,既可以存储简单的字符,也可以存储复杂的对象。 为了帮助初学者掌握 Python 中的序列操作,本文将围绕**字符串**、**列表**和**元组**这三种序列类型,详细介绍其定义、常用方法和具体示例。
Python入门:6.深入解析Python中的序列
|
1天前
|
知识图谱 Python
Python入门:4.Python中的运算符
Python是一间强大而且便捷的编程语言,支持多种类型的运算符。在Python中,运算符被分为算术运算符、赋值运算符、复合赋值运算符、比较运算符和逻辑运算符等。本文将从基础到进阶进行分析,并通过一个综合案例展示其实际应用。
|
1天前
|
程序员 UED Python
Python入门:3.Python的输入和输出格式化
在 Python 编程中,输入与输出是程序与用户交互的核心部分。而输出格式化更是对程序表达能力的极大增强,可以让结果以清晰、美观且易读的方式呈现给用户。本文将深入探讨 Python 的输入与输出操作,特别是如何使用格式化方法来提升代码质量和可读性。
Python入门:3.Python的输入和输出格式化
|
1天前
|
存储 Linux iOS开发
Python入门:2.注释与变量的全面解析
在学习Python编程的过程中,注释和变量是必须掌握的两个基础概念。注释帮助我们理解代码的意图,而变量则是用于存储和操作数据的核心工具。熟练掌握这两者,不仅能提高代码的可读性和维护性,还能为后续学习复杂编程概念打下坚实的基础。
Python入门:2.注释与变量的全面解析
|
1天前
|
机器学习/深度学习 人工智能 算法框架/工具
Python入门:1.Python介绍
Python是一种功能强大、易于学习和运行的解释型高级语言。由**Guido van Rossum**于1991年创建,Python以其简洁、易读和十分工程化的设计而带来了庞大的用户群体和丰富的应用场景。这个语言在全球范围内都被认为是**创新和效率的重要工具**。
Python入门:1.Python介绍
|
11天前
|
JSON 数据可视化 API
Python 中调用 DeepSeek-R1 API的方法介绍,图文教程
本教程详细介绍了如何使用 Python 调用 DeepSeek 的 R1 大模型 API,适合编程新手。首先登录 DeepSeek 控制台获取 API Key,安装 Python 和 requests 库后,编写基础调用代码并运行。文末包含常见问题解答和更简单的可视化调用方法,建议收藏备用。 原文链接:[如何使用 Python 调用 DeepSeek-R1 API?](https://apifox.com/apiskills/how-to-call-the-deepseek-r1-api-using-python/)
|
22天前
|
IDE 测试技术 项目管理
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!
PyCharm是由JetBrains开发的Python集成开发环境(IDE),专为Python开发者设计,支持Web开发、调试、语法高亮、项目管理、代码跳转、智能提示、自动完成、单元测试和版本控制等功能。它有专业版、教育版和社区版三个版本,其中社区版免费且适合个人和小型团队使用,包含基本的Python开发功能。安装PyCharm前需先安装Python解释器,并配置环境变量。通过简单的步骤即可在PyCharm中创建并运行Python项目,如输出“Hello World”。
197 13
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!

热门文章

最新文章

推荐镜像

更多