【C语言】结构体内存对齐:热门面试话题

简介: 【C语言】结构体内存对齐:热门面试话题

一、结构体中内存对齐

1.1 对齐规则

  • 结构体第一个成员变量对齐相对于结构体成员地址偏移量为0的位置上
  • 其他成员变量需要对齐到对齐数的整数倍
  • 结构体总大小最大对齐数的正数倍

如果存在嵌套结构体的情况,嵌套结构体占用空间需要对齐自身最大对齐数的整数倍,同时在计算结构体总大小的时候,嵌套结构体的最大对齐数参与比较

注意】:对齐数 == 编译器默认的一个对齐数与该成员变量大小的较小值

  • 在vs环境下,系统默认对齐为8
  • Linux中没有默认对齐数,对齐数就是成员自身的大小

通过题目熟练的掌握以上知识.

struct S1
{
    char c1;
    int i;
    char c2;
};
printf("%d\n", sizeof(struct S1));--12
struct S2
{
    char c1;
    char c2;
    int i;
};
printf("%d\n", sizeof(struct S2));--8
struct S4
{
    char c1;
    struct S2 s2;
    double d;
};
printf("%d\n", sizeof(struct S2));--24

说明】:数值代表的是结构体变量地址处的偏移量


1.2 内存对齐的意义

⼤部分的参考资料都是这样说的

平台原因(移植原因)

  • 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常

性能原因

  • 数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;对齐的内存访问仅需要⼀次访问。

假设⼀个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对齐成8的倍数,那么就可以用一个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分放在两个8字节内存块中。

总体来说:结构体的内存对齐是拿空间来换取时间的做法

通过上述的观察,不难看出。如果不存在内存对齐,需要执行两个内存访问(对象被分放在两块内存块),而内存对齐只需要进行一次。

对此在涉及结构体时,需要考虑满足对齐,又要节省空间。可以将占用空间小的成员尽量集中在一起

struct S1
{
    char c1;
    int i;
    char c2;
};
struct S2
{
    char c1;
    char c2;
    int i
};
S2 < S1

1.3 #pragma(预处理指令)

1.3.1 pragma相关介绍

  • 用于指定计算机或操作系统特定的编译器功能
  • 根据定义pragma指令是计算机或操作系统特定的,并且通常对于每个编译器而言都有所不同
  • pragma指令可用于条件语句以提供新的预处理器功能,或为编译器提供实现所定义的信息,

1.3.2 #pragma pack(n)修改默认对齐数

#include <stdio.h>
#pragma pack(1)//设置默认对齐数为1
struct S
{
    char c1;
    int i;
    char c2;
};
#pragma pacK()//取消默认对齐数,还原为默认对齐数
int main()
{
    printf("%d\n",sizeof(struct S));
    return 0;
}

推荐使用场景,在结构体进行内存对齐时,如果对于对齐方式不能达到预期,可以通过该指令更改默认对齐数

获得该成员变量的偏移量

这里需要使用一个函数offsetof()宏,该函数被声明在stddef.h文件中,以下是函数offsetof()宏

size_t offsetof(type,member);

宏定义】:

#define offsetof(TYPE,MEMBER) ((size_t)&((TYPE*)0)->MEMBER)

如果想要了解更多,可以参考下这篇博客Offsetof宏详解-CSDN博客.这里只如何去使用Offsetof()宏计算出结构体某成员地址的偏移量。

#include <stdio.h>
#include <stddef.h>
struct S
{
    char a;
    int i;
};
int main()
{
    printf("%d\n",offsetof(struct S,i));
    //那么这里的结果就是就是4
    return 0;
}

小总结】:

结构体中的内存对齐是为了以空间换取时间的做法,随着计算机不断地更新换代,一般不需要担心内存空间不足的问题,逐渐地从更多考虑的是时间上的问题。同时为了节约空间的开销,提出位段


二、结构体实现位段

2.1 位段的概念

位段是结构体的一种变形,在功能、用法上与结构体基本一致,但是在于内存分配上不同,位段可以很好的节省空间,可存在位段跨平台的问题。同时与结构体相比有两个点不同。

  • 成员上:intunsigned intsigned int,但是在C99中是可以选择其他类型
  • 格式上:位段成员名后面有一个冒号和一个数字
struct A
{
    char _a:2;
    char _b:5;
};

【说明】:这里数字代表的是该成员变量占用空间大小,而大小单位是比特

【问题】:位段A所占的内存大小是多大?

这个问题,需要利用下面的知识了


2.2 位段的内存分配

  • 位段成员:intunsigned intsigned int或者char等类型(需要是整形,是要转换为二进制
  • 位段开辟空间的大小一般是以四个字节或一个字节开辟的
  • 位段涉及许多不确定的因素,位段是不跨平台的,注意可移植的程序,应该避免使用位段
struct S
{
    char a:3;
    char b:4;
    char c:5;
    char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;

2.3 位段的跨平台问题

不确定的因素大致包括】:

  1. 内存存放的方向是从左到右,还是从右到左
  2. 是低地址到高地址,还是高地址到低地址
  3. int类型是不确定是被当作有符号数还是无符号数
  4. 当一个结构体包括了两个位段,第二个位段比较大,无法容纳第一个位段剩下的空间,是舍弃还是利用剩下的空间,这是不确定的
  5. 位段中最大位的数目不能确定(16位机器最大16,32位机器最⼤32,写成27,在16位机器会出问题),可能会冲出最大的范围,出现问题

我们不妨以vs2013环境下测量下数据

vs2013下,位段是从左到右,从低地址到高地址,位段需要的空间不足,直接开辟一块新的空间,我们来结合图片理解下

【步骤】:

  1. 位段开辟八个bit位(这里是char类型的情况)
  2. 位段成员后面数字是占用多少bit位
  3. 根据变量数据,转化为二级制(一个二级制为一个比特位),根据位段对应的数据,将转为的二级制多个比特位放入
  4. 关于上不确定因素中(4),vs2013选择舍弃,那就开辟一块新的空间,重复(1,2,3)步骤

2.4 位段的应用

比如下图中网络协议中,在一个结构存在很多只需要几个bit位就能实现的效果,这里使用位段就能达到想要的效果,也能节省空间的浪费。同时网络传输的数据大小也会小一点,提高了网络的流畅和效率!

位段使用注意事项】:

struct A
{
    int _a:2;
    int _b:5;
};
int main()
{
    //错误的做法
    struct A s={0};
    scanf("%d",&s._a);
    //正确的示范
    int b=0;
    scanf("%d",&b);
    s._b=b;
    return 0;
}

说明】:

位段的几个成员共有同一个字节,而有些成员的起始位置并不是某个字节的起始位置。对此这些位置是没有地址(内存中每个字节分配一个地址,一个字节内部的bit位是没有地址的

解决办法】:

可以将值放入一个变量中,再通过赋值给位段成员,这个赋值在以后的操作中,是很巧妙的用法的。




相关文章
|
1月前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
71 16
|
6月前
|
C语言
【C语言基础篇】结构控制(中)循环结构
【C语言基础篇】结构控制(中)循环结构
|
2月前
|
编译器 C语言 Python
C语言结构
C语言结构
18 0
|
3月前
|
存储 编译器 程序员
C语言程序的基本结构
C语言程序的基本结构包括:1)预处理指令,如 `#include` 和 `#define`;2)主函数 `main()`,程序从这里开始执行;3)函数声明与定义,执行特定任务的代码块;4)变量声明与初始化,用于存储数据;5)语句和表达式,构成程序基本执行单位;6)注释,解释代码功能。示例代码展示了这些组成部分的应用。
117 10
|
3月前
|
C语言
C语言程序设计核心详解 第四章&&第五章 选择结构程序设计&&循环结构程序设计
本章节介绍了C语言中的选择结构,包括关系表达式、逻辑表达式及其运算符的优先级,并通过示例详细解释了 `if` 语句的不同形式和 `switch` 语句的使用方法。此外,还概述了循环结构,包括 `while`、`do-while` 和 `for` 循环,并解释了 `break` 和 `continue` 控制语句的功能。最后,提供了两道例题以加深理解。
103 7
|
3月前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
2月前
|
Serverless 编译器 C语言
【C语言】指针篇- 深度解析Sizeof和Strlen:热门面试题探究(5/5)
【C语言】指针篇- 深度解析Sizeof和Strlen:热门面试题探究(5/5)
|
3月前
|
C语言
C语言程序设计核心详解 第三章:顺序结构,printf(),scanf()详解
本章介绍顺序结构的基本框架及C语言的标准输入输出。程序从`main()`开始依次执行,框架包括输入、计算和输出三部分。重点讲解了`printf()`与`scanf()`函数:`printf()`用于格式化输出,支持多种占位符;`scanf()`用于格式化输入,需注意普通字符与占位符的区别。此外还介绍了`putchar()`和`getchar()`函数,分别用于输出和接收单个字符。
|
3月前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
4月前
|
C语言
C语言------选择结构
这篇文章是C语言选择结构的入门实训,包括多个练习题及其源代码,旨在帮助读者熟练掌握条件语句和选择结构程序设计方法,并熟悉switch语句和程序调试过程。
C语言------选择结构