Python数据分析5

简介: 虽然scikit-learn功能强大,但对于人工神经网络这一重要模型却支持不足。人工神经网络在自然语言处理和图像识别等领域有着广泛应用,而深度学习作为其延伸,已成为研究热点。因此,在Python中实现神经网络变得尤为重要。目前主流的深度学习框架有TensorFlow、Keras、PyTorch、PaddlePaddle和Caffe等。其中,TensorFlow由Google于2015年推出,基于先前的深度学习基础框架DistBelief构建,因其高度灵活、可移植以及自动计算梯度导数等特点,迅速成为最受欢迎的深度学习框架之一,支持多种编程语言接口,如C++、Python、Java等。

2.3.2深度学习
虽然scikit-learn已经足够强大了,但它不包含一种强大的模型--人工神经网络。人工神经网络是功能相当强大但原理又相当简单的模型,在易语言处理、图像识别等领域都有重要的作用。近年来逐渐引人注意的深度学习算法,本质上是一种神经网络,可见在Python中实现神经网络是非常必要的。常用的深度学习框架包括TensorFlow、Keras、PyTorch、PaddlePaddle和Caffe等。
1、TensorFlow
2015年11月10日,Google推出了全新的开源工具TensorFlow,它是基于Google 2011年开发的深度学习基础框架DistBelief构建而成的。TensorFlow主要用于深度神经网络,一经推出就获得了较大的成功,并迅速成为用户使用较多的深度学习框架。
Tensor意味着数据,Flow意味着流动、计算、映射,同时也体现了数据是有向地流动、计算和映射的。
TensorFlow是一个“神经网络”库,具有高度的灵活性,可以将用户使用Python绘制的计算图放到计算核心之中;具有可移植性,可以在CPU、GPU上运行;可以自动计算梯度导数,使用户不必纠结具体的求解细节,只须关注模型的定义与验证;通过在底层上对线程、队列、异步操作给予良好的支持,在多计算单元控制上将不同的计算任务分配到不同的单元之中,实现性能最优化;支持C++、Python、Java、Go、JavaScript等接口的衔接。

目录
相关文章
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
53 2
|
1月前
|
机器学习/深度学习 数据可视化 算法
使用Python进行数据分析:从零开始的指南
【10月更文挑战第9天】使用Python进行数据分析:从零开始的指南
37 1
|
13天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
40 0
|
7天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
19 2
|
14天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
29 2
|
19天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
22 2
|
5天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
5天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
7天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行高效的数据分析
【10月更文挑战第9天】使用Python进行高效的数据分析
22 1