Python数据分析5

简介: 虽然scikit-learn功能强大,但对于人工神经网络这一重要模型却支持不足。人工神经网络在自然语言处理和图像识别等领域有着广泛应用,而深度学习作为其延伸,已成为研究热点。因此,在Python中实现神经网络变得尤为重要。目前主流的深度学习框架有TensorFlow、Keras、PyTorch、PaddlePaddle和Caffe等。其中,TensorFlow由Google于2015年推出,基于先前的深度学习基础框架DistBelief构建,因其高度灵活、可移植以及自动计算梯度导数等特点,迅速成为最受欢迎的深度学习框架之一,支持多种编程语言接口,如C++、Python、Java等。

2.3.2深度学习
虽然scikit-learn已经足够强大了,但它不包含一种强大的模型--人工神经网络。人工神经网络是功能相当强大但原理又相当简单的模型,在易语言处理、图像识别等领域都有重要的作用。近年来逐渐引人注意的深度学习算法,本质上是一种神经网络,可见在Python中实现神经网络是非常必要的。常用的深度学习框架包括TensorFlow、Keras、PyTorch、PaddlePaddle和Caffe等。
1、TensorFlow
2015年11月10日,Google推出了全新的开源工具TensorFlow,它是基于Google 2011年开发的深度学习基础框架DistBelief构建而成的。TensorFlow主要用于深度神经网络,一经推出就获得了较大的成功,并迅速成为用户使用较多的深度学习框架。
Tensor意味着数据,Flow意味着流动、计算、映射,同时也体现了数据是有向地流动、计算和映射的。
TensorFlow是一个“神经网络”库,具有高度的灵活性,可以将用户使用Python绘制的计算图放到计算核心之中;具有可移植性,可以在CPU、GPU上运行;可以自动计算梯度导数,使用户不必纠结具体的求解细节,只须关注模型的定义与验证;通过在底层上对线程、队列、异步操作给予良好的支持,在多计算单元控制上将不同的计算任务分配到不同的单元之中,实现性能最优化;支持C++、Python、Java、Go、JavaScript等接口的衔接。

目录
相关文章
|
5月前
|
数据采集 数据可视化 数据挖掘
Python数据分析实战:Pandas处理结构化数据的核心技巧
在数据驱动时代,结构化数据是分析决策的基础。Python的Pandas库凭借其高效的数据结构和丰富的功能,成为处理结构化数据的利器。本文通过真实场景和代码示例,讲解Pandas的核心操作,包括数据加载、清洗、转换、分析与性能优化,帮助你从数据中提取有价值的洞察,提升数据处理效率。
309 3
|
7月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
911 0
|
4月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
5月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。
|
6月前
|
存储 数据挖掘 大数据
基于python大数据的用户行为数据分析系统
本系统基于Python大数据技术,深入研究用户行为数据分析,结合Pandas、NumPy等工具提升数据处理效率,利用B/S架构与MySQL数据库实现高效存储与访问。研究涵盖技术背景、学术与商业意义、国内外研究现状及PyCharm、Python语言等关键技术,助力企业精准营销与产品优化,具有广泛的应用前景与社会价值。
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
271 3
|
9月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
390 2
|
12月前
|
机器学习/深度学习 存储 数据可视化
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
本书介绍了如何将Python与Excel结合使用,以提升数据分析和处理效率。内容涵盖Python入门、pandas库的使用、通过Python包操作Excel文件以及使用xlwings对Excel进行编程。书中详细讲解了Anaconda、Visual Studio Code和Jupyter笔记本等开发工具,并探讨了NumPy、DataFrame和Series等数据结构的应用。此外,还介绍了多个Python包(如OpenPyXL、XlsxWriter等)用于在无需安装Excel的情况下读写Excel文件,帮助用户实现自动化任务和数据处理。
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
422 5

推荐镜像

更多