从“纸面算力”到“好用算力”,超聚变打通AI+“最后一公里”

简介: 2024年,《政府工作报告》首提“AI+”行动,推动人工智能成为新质生产力引擎。市场层面,AI+正深刻变革金融、医疗、制造等行业,但AI算力瓶颈依然存在。在2024年中国算力大会上,超聚变等企业探讨了算力的绿色化和效能提升。超聚变推出的FusionPoD for AI全液冷服务器,显著降低能耗并提升算力效能,其FusionOne AI解决方案也加速了AI在各行业的落地。这些创新将重塑算力格局,推动智能革命。

如果要评选2024年的年度科技名词,AI+当属最热门的候选项。

年初的《政府工作报告》中首次提出了“人工智能+”行动,正在从顶层设计着手,加快形成以人工智能为引擎的新质生产力。

折射到市场层面,AI+作为一种新的范式,不断深入千行万业。金融、医疗、制造、交通、智慧城市等各行各业都在掀起一场智能革命,通过AI和算力的结合挖掘新质生产力,不断释放出创新的乘法效应。

同时也遇到了一些待解的难题,比如作为基础设施的AI算力:当AI成为场景革新的驱动力量,算力环节如何破局?

刚刚结束的2024年中国算力大会“AI+,释放算力新价值”论坛上,来自超聚变、中国电信、滴普科技、百度、英特尔等算力产业上下游的厂商,以及人工智能领域的院士和专家,深入探讨了AI算力的现状和趋势。

也让我们看到了问题的答案。

01 打破算力瓶颈,行业需要“好用算力”
“AI+各行各业”不是简单的两者相加,而是要利用数据、算力、算法等智能要素,催生出新的业态和增长动能。

借用一个形象的比喻:AI+就好比是做饭,算法是锅、数据是米、算力是火。特别是在“算法跟着算力走”的背景下,算力已经可以在某种程度上和生产力划等号,算力强则AI强,算力不足,AI就会掉链子。

现实情况却是,AI算力的瓶颈在2024年依旧存在。

一是算力缺口的加剧。

参考美银等机构的报告:大模型进入到万亿参数时代后,对算力的需求达到了每年750倍的指数级膨胀,而目前的硬件算力供给只有3倍每两年的增速,供需缺口正在随着时间加剧。

也就意味着,让无数企业头大的“算力焦虑”,在时间的作用下将只增不减,同时也在拷问当前的算力供给方式:仅仅只是在数量上做文章,永远填不满各行各业的算力缺口,必须要思考怎么提升智能算力的效能。

二是算力亟需绿色化。

马斯克和黄仁勋都曾抱怨“算力的尽头是电力”,之后就传出了“微软算力中心搞崩了电网”的新闻。按照国际能源署的预测,2026年数据中心、人工智能等行业的电力消耗将达到1000太瓦时以上,增速是全球用电量的数十倍。

在这样的语境下,绿色智算所涉及的不单单是环保议题,能否在绿色智算的布局上未雨绸缪,给出可行的创新解决方案降低功耗,直接关系着下一个十年的算力供给能力,左右着AI+在各行各业的融合进程。

三是算力应用的困境。

没有汽车工业的繁荣,石油不过是廉价的燃料。同样的逻辑也适用于AI,倘若不能在应用层降低门槛、疏通堵点,使能各行各业的开发者高效打造AI原生应用,所谓的算力价值也就无从谈起。

目前AI应用还处于试点阶段,想要走向规模化落地,面临着算力、模型、应用等不同层级的痛点。比如算力的单一和兼容性问题,尤其是在模型推理的多元算力需求下;大模型调用的高门槛,模型和算力资源的匹配就劝退了不少开发者;以及应用开发时面临缺少工具链、开发效率低等挑战。

AI算力的瓶颈是否无解呢?答案是否定的。

2024年中国算力大会“AI+,释放算力新价值”论坛上,超聚变全球Marketing与销售服务部总裁、算力事业部总裁张小华道出了行业上下游的一个共识:推动算力从“纸面算力”到“可用算力”再到“好用算力”的转换。

简而言之,AI算力既要增量,也要提质。

正如超聚变算力领域与拓展部总裁唐启明在演讲中提到的:“面向AI算力,超聚变正在重构基础设施、跨越生态裂谷,逐步推向行业落地,通过纵向做深构筑竞争力,横向扩展以IT赋能OT,和伙伴一起共促AI算力产业繁荣。”

超聚变指出了方向,也给出了可行的路径。

02 告别能耗魔咒,构建“绿色”智能算力
首先要解决的就是绿色智算。

为了解决算力资源分布不均衡的情况,国家在2022年初启动了“东数西算”工程,将东部的算力需求有序引导到西部,发挥西部的自然气候和电力优势,通过算力资源的跨域调配,解决算力中心的能耗压力。

可随着大模型推理需求的爆发,对时延的要求越来越高,不少城市开始建立城市级、区域级的智算中心,以满足不断增长的推理算力需求。但在智算中心的建设上,并没有盲目上马,纷纷画出了能耗红线。

比如工信部等六部门在《工业能效提升行动计划》中提出:到2025年,新建大型、超大型数据中心电能利用效率(PUE)要优于1.3;北京、上海、深圳、杭州、广州等城市先后对新建数据中心提出了严格要求,其中深圳已明确鼓励PUE值低于1.25的数据中心。

正如外界所熟知的,PUE值越接近1,表明非IT设备的耗能越少,数据中心的能效水平越高。目前国内大型数据中心的平均PUE值为1.55,超大型数据中心平均PUE值也只有1.46,意味着能耗只有一半用在了“计算”上,其他的则浪费在了散热、照明等方面。

对于智算中心分布密集的一二线城市,能否在自然气候不占优势的前提下,降低智算中心的PUE值呢?

2024年中国算力大会上,超聚变的FusionPoD for AI 新一代全液冷整机柜GPU服务器斩获了“算力中国·年度重大突破成果”。在主办方公布的获奖理由里,除了在算力密度、海量数据访问上的出色表现,散热和供电能力的权重同样不可小觑:100%全液冷散热搭配105kW高效集中供电,让PUE低至1.06,5年TCO(总成本)降低15%以上,可以说是当下绿色智算的首选方案。

可以佐证的是,目前超聚变液冷服务器的出货量已经达到70000+节点,其中和浙江电信联合创新的端到端完整的数据中心液冷解决方案,采用了FusionPoD for AI整机柜液冷服务器规模部署,在有“中国四大火炉”之称的杭州,实现了极致能效和超低PUE。

一个不应被忽略的消息在于,超聚变在2024年中国算力大会上发起成立了“液冷AI开放联盟”,将致力于构建标准化的智算底座,让产业用户可以更快、更易、更好地获取和使用AI算力。

言外之意,基于液冷AI开放架构的“绿色算力”,在接下来一段时间里,每年都会成倍提升。

开源证券等第三方机构也在报告中预测了绿色智算的趋势:AIGC正驱动智算中心朝高密度、低PUE发展,2022年到2027年中国液冷数据中心市场将保持59%的复合增长率,2027年市场规模将突破千亿大关。

把以上信息做个归纳的话,智算中心告别能耗“魔咒”,已经是一种现在进行时,一种行业主旋律。

03 软硬件协同,打通AI+“最后一公里”
绿色智算加速了“可用算力”进程,距离“好用算力”还有多远呢?

作为算力基础设施与服务领域的“塔尖”选手,超聚变已经给出了自己的回答:

南向创新提升智算效能。

不只是前面提到的FusionPoD for AI全液冷整机柜GPU服务器,还包括开箱即用的超聚变超融合训推一体机等产品,同时推出了AI Space大模型加速引擎,借助模型迁移、适配和调优能力来提升智算效能。

北向使能AI融入现有业务。

直接的例子就是2024年中国算力大会上发布的超聚变FusionOne Al解决方案,围绕AI落地在算力、模型、应用等环节的痛点,提供了三大核心能力,进而缩短从算力到应用的距离,加速AI融入业务。

在算力层,超聚变打造了兼容多元AI算力、异构算力的XPU资源池,瞄准了行业普遍存在的痛点:在实际业务中常常需要CPU、GPU、FPGA、NPU等多种算力,被迫部署不同架构的服务器。

超聚变通过XPU资源池的方式,可以广泛兼容intel、AMD、NVIDIA、昇腾、摩尔线程等多种异构算力,并在智能调度的帮助下实现了50%有效算力提升,助力客户在推理算力上“一次投资,持续演进”。

在模型层,超聚变的模型工程涵盖了开源和第三方商用模型、场景化数据集,以及测试、联调、发布、部署、管理在内的模型使能工具和算子加速,进一步降低了大模型微调开发和推理上线的技术门槛。

以大模型与算力资源的匹配为例,在传统流程中,工程师需要根据模型的需求调整算力资源,在模型的计算需求与可用的硬件资源之间找到一个平衡点,对经验和能力的要求非常高,超聚变的解法是“模型与算力资源自动按需匹配”。

在应用层,超聚变提供了数据工程、知识库、插件在内的全周期AI工具链,并配备了专业的AI服务团队,前者旨在降低AI原生应用开发的门槛,后者对应的是100多位经验丰富的AI工程师。

个中逻辑并不难解释。相较于算力和模型,应用直接和客户的生产力挂钩,在AI+方兴未艾的氛围下,只有打通AI+的“最后一公里”,让算力的价值照进现实,让各行各业看到AI+的“倍增效应”,整个产业才会有序向上生长。

目前FusionOne Al解决方案已经服务超聚变的主流业务场景,覆盖了4000+员工、10000+合作伙伴,生成了百万行代码,实现80%以上的效率提升……超聚变软硬件协同释放算力新价值的解法,已经得到了验证。

每次提到AI+的时候,总有人想要寻找杀手级应用或者iPhone时刻,或许最正确的方式恰恰是像超聚变这样,解决AI+的一个个痛点和堵点,让智能算力润物细无声地“滋润”各行各业的每一个场景。

04 写在最后
诚如2024年中国算力大会所呈现的, 一个AI驱动的美丽新世界在算力时代变得越来越清晰。

通往“新世界”的道路上,有挑战,有机遇,还有一群默默“铺路”的技术人。有理由相信,超聚变和伙伴们的联合创新,将重塑算力新格局、释放算力新价值,点亮千行万业的数智化之路。

在AI+的浪潮下,城市将变得更加智慧、安全,企业将更加高效、充满活力,生活将更加便捷、充满想象。

相关文章
|
6月前
|
人工智能 自然语言处理 安全
国产算力平台的磨砺与革新:助力国内AI走向更高更远
近几年技术圈由人工智能的快速发展,引起来了变革和创新,虽然国外的算力一直是走在最前沿,但是国产算力平台在推动我国AI产业中发挥着重要作用,扮演着重要角色,但要助力国内AI走得更高更远,国产算力平台还需要经历磨砺和革新。那么本文就来分享和讨论一下国产算力平台所需的磨砺和革新,以及这样的平台在国产算力土壤之上能孕育出的AI创新之花。
227 1
国产算力平台的磨砺与革新:助力国内AI走向更高更远
|
6月前
|
人工智能 编解码 物联网
Stability AI推出新的AI图像生成模型Stable Cascade,对比 SD2.1 的算力成本降低了10倍左右!
Stability AI推出新的AI图像生成模型Stable Cascade,对比 SD2.1 的算力成本降低了10倍左右!
108 2
|
6月前
|
机器学习/深度学习 人工智能 算法
展望2024: 中国AI算力能否引爆高性能计算和大模型训练的新革命?
2023年是人工智能发展的重要转折年,企业正在从业务数字化迈向业务智能化。大模型的突破和生成式人工智能的兴起为企业实现产品和流程的革新提供了先进工具,引领产业迈入智能创新的新阶段。在这个新时代,企业不再仅关注如何增强智能化能力,而更加注重如何利用人工智能实现产品和流程的革新。
1982 0
|
1月前
|
人工智能 自然语言处理 算法
AI 系统的出现与算力发展
AI系统的崛起得益于大数据积累、强大算力与先进算法的共同驱动。大数据为AI提供了丰富学习材料,促进算法优化与应用创新;算法进步则提升了图像识别和自然语言处理等领域的性能,扩展了AI的应用范围。此外,GPU、TPU等专用芯片大幅加快了模型训练速度,通过硬件创新进一步增强了AI系统的效能。未来,算法与硬件的协同优化将推动AI技术迈向更高智能水平。
60 1
|
2月前
|
存储 人工智能 算法
阿里云AI基础设施升级亮相,模型算力利用率提升超20%
阿里云AI基础设施升级亮相,模型算力利用率提升超20%
218 18
|
2月前
|
人工智能 自动驾驶 云栖大会
何小鹏驾驶“全球首款AI汽车”亮相云栖大会 深化与阿里云AI算力合作
小鹏汽车加速端到端自动驾驶落地 深化与阿里云AI算力合作
388 13
|
30天前
|
人工智能 算法 JavaScript
无界SaaS与AI算力算法,链接裂变万企万商万物互联
本文介绍了一种基于无界SaaS与AI算力算法的商业模式的技术实现方案,涵盖前端、后端、数据库及AI算法等关键部分。通过React.js构建用户界面,Node.js与Express搭建后端服务,MongoDB存储数据,TensorFlow实现AI功能。提供了项目结构、代码示例及部署建议,强调了安全性、可扩展性和性能优化的重要性。
|
5月前
|
机器学习/深度学习 人工智能
可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊
【6月更文挑战第4天】AI在可控核聚变研究中实现双托卡马克装置3D磁场全自动优化,助力抑制边缘能量爆发(ELMs),提升核聚变性能90%,成果登上《自然通讯》。虽有ELMs少量出现及装置适应性问题,但这一突破为经济可行的核聚变能源发展迈出重要步伐。[论文链接](https://www.nature.com/articles/s41467-024-48415-w)
91 1
|
5月前
|
人工智能 算法 数据中心
这场ICT市场趋势大会,将定义云、算力和AI的里程碑
这场ICT市场趋势大会,将定义云、算力和AI的里程碑
|
5月前
|
机器学习/深度学习 人工智能 中间件
解读顺网算力与AI,破局AIGC落地“最后一公里”
解读顺网算力与AI,破局AIGC落地“最后一公里”