Pandas表格样式美化指南:应用条形图

简介: Pandas表格样式美化指南:应用条形图

在数据分析的世界里,Pandas不仅仅是数据处理的得力助手,它还拥有强大的表格样式设置功能,可以让你的数据分析报告更加生动、直观。通过对表格样式的调整,我们可以更好地突出关键数据,提高数据的可读性,从而使分析结果一目了然。

Pandas的DataFrame提供了.style 属性,它可以帮助我们对表格进行美化。我们可以调整字体、背景色、边框等,甚至可以应用条件格式化,让数据自己“说话”。

以下是一些常用的样式设置方法:

设置精度:使用 .style.format方法,我们可以设置表格中数字的显示精度。

条件格式化:

使用 .style.applymap方法,基于单元格的值改变样式,如根据值的高低改变字体颜色。

.style.apply方法可以在行或列的级别上应用样式。应用条形图:.style.bar方法可以在单元格内添加条形图,直观显示数值大小。高亮最大最小值:.style.highlight_max 和 .style.highlight_min 可以高亮显示每列的最大值和最小值。

自定义样式函数:创建自定义样式函数,为满足特定条件的单元格设置特定样式。style模块提供了不同的选项来修改数据的外观,允许我们自定义以下方面:

给单元格着色:根据单元格值或条件应用不同的颜色。

突出显示:强调特定的行、列或值。

格式:调整显示值的格式,包括精度和对齐方式。

条形图:在单元格内用水平或垂直条形图表示数据。


下面,本篇主要讲一下应用条形图的实例展示比如:你有一个100名学生的学习成绩的 DataFrame,通过以下几行代码生成的:


import pandas as pdimport numpy as np
# 设置随机数种子,以便结果可复现np.random.seed(0)
# 创建一个包含100名学生的DataFrame# 生成数据students = pd.DataFrame({    '学号': np.arange(1, 101),    '语文': np.random.randint(50, 100, 100),    '数学': np.random.randint(50, 100, 100),    '英语': np.random.randint(50, 100, 100),    '物理': np.random.randint(50, 100, 100),    '化学': np.random.randint(50, 100, 100),    '生物': np.random.randint(50, 100, 100),    '历史': np.random.randint(50, 100, 100),    '地理': np.random.randint(50, 100, 100)})

b4ab56a9ca0383b73b28e1d8fd45b29f.png


styled_df1 = students.style.bar(color='#FFCFC9',subset=['语文','数学','英语']).bar(color='#FFF1B0',subset=['物理','化学','生物']).bar(color='#BEEAE5',subset=['历史','地理'])

运行效果为:

d588f22f33db07ca09c1268f7497c99f.png

注意:这个应用条形图的样式是不能保存到Excel中的,这点确实有点让人出乎意料。


styled_df1.to_excel('1111.xlsx', engine='openpyxl', index=False)

这个语句是不能将样式保存到Excel中的

后面,我们将逐一讲述.style中的自定义样式函数,请大家持续关注

相关文章
|
28天前
|
机器学习/深度学习 搜索推荐 数据挖掘
Pandas数据应用:广告效果评估
在数字化营销中,广告效果评估至关重要。Pandas作为Python的强大数据分析库,在处理广告数据时表现出色。本文介绍如何使用Pandas进行广告效果评估,涵盖数据读取、预览、缺失值处理、数据类型转换及常见报错解决方法,并通过代码案例详细解释。掌握这些技能,可为深入分析广告效果打下坚实基础。
41 17
|
29天前
|
数据采集 供应链 数据可视化
Pandas数据应用:供应链优化
在当今全球化的商业环境中,供应链管理日益复杂。Pandas作为Python的强大数据分析库,能有效处理库存、物流和生产计划中的大量数据。本文介绍如何用Pandas优化供应链,涵盖数据导入、清洗、类型转换、分析与可视化,并探讨常见问题及解决方案,帮助读者在供应链项目中更加得心应手。
50 21
|
30天前
|
数据采集 存储 供应链
Pandas数据应用:库存管理
本文介绍Pandas在库存管理中的应用,涵盖数据读取、清洗、查询及常见报错的解决方法。通过具体代码示例,讲解如何处理多样数据来源、格式不一致、缺失值和重复数据等问题,并解决KeyError、ValueError等常见错误,帮助提高库存管理效率和准确性。
106 72
|
1月前
|
机器学习/深度学习 数据采集 供应链
Pandas数据应用:销售预测
本文介绍如何使用Pandas进行销售预测。首先,通过获取、清洗和可视化历史销售数据,确保数据质量并理解其特征。接着,进行特征工程,构建线性回归等模型进行预测,并评估模型性能。最后,针对常见问题如数据类型不匹配、时间格式错误、内存不足和模型过拟合提供解决方案。掌握这些步骤,可有效提升销售预测的准确性,助力企业优化库存管理和提高客户满意度。
55 17
|
1月前
|
机器学习/深度学习 存储 算法
Pandas数据应用:客户流失预测
本文介绍如何使用Pandas进行客户流失预测,涵盖数据加载、预处理、特征工程和模型训练。通过解决常见问题(如文件路径错误、编码问题、列名不一致等),确保数据分析顺利进行。特征工程中创建新特征并转换数据类型,为模型训练做准备。最后,划分训练集与测试集,选择合适的机器学习算法构建模型,并讨论数据不平衡等问题的解决方案。掌握这些技巧有助于有效应对实际工作中的复杂情况。
142 95
|
1月前
|
数据采集 存储 算法
Pandas数据应用:市场篮子分析
市场篮子分析是一种用于发现商品间关联关系的数据挖掘技术,广泛应用于零售业。Pandas作为强大的数据分析库,在此领域具有显著优势。本文介绍了市场篮子分析的基础概念,如事务、项集、支持度、置信度和提升度,并探讨了数据预处理、算法选择、参数设置及结果解释中的常见问题与解决方案,帮助用户更好地进行市场篮子分析,为企业决策提供支持。
70 29
|
1月前
|
机器学习/深度学习 BI 定位技术
Pandas数据应用:用户细分
用户细分是数据分析和商业智能中的关键步骤,通过将用户群体划分为不同子集,企业可以更精准地了解用户需求并制定营销策略。Pandas 是 Python 中常用的数据处理库,支持高效的数据操作。使用 Pandas 进行用户细分包括数据准备、清洗、特征工程、细分和结果分析等步骤。常见问题如数据类型不一致、内存不足等可通过相应方法解决。Pandas 简化了用户细分流程,帮助获取有价值的洞察。
59 24
|
1月前
|
机器学习/深度学习 数据采集 JSON
Pandas数据应用:机器学习预处理
本文介绍如何使用Pandas进行机器学习数据预处理,涵盖数据加载、缺失值处理、类型转换、标准化与归一化及分类变量编码等内容。常见问题包括文件路径错误、编码不正确、数据类型不符、缺失值处理不当等。通过代码案例详细解释每一步骤,并提供解决方案,确保数据质量,提升模型性能。
150 88
|
1月前
|
数据采集 存储 数据处理
Pandas数据应用:时间序列预测
本文介绍了使用 Pandas 进行时间序列预测的方法,涵盖时间序列的基础概念、特征(如趋势、季节性等),以及数据处理技巧(如创建时间序列、缺失值处理和平滑处理)。同时,文章详细讲解了简单线性回归和 ARIMA 模型的预测方法,并针对常见问题(如数据频率不一致、季节性成分未处理)及报错提供了解决方案。通过这些内容,读者可以掌握时间序列预测的基本步骤和技巧。
63 27
|
1月前
|
存储 人工智能 自然语言处理
Pandas数据应用:自然语言处理
本文介绍Pandas在自然语言处理(NLP)中的应用,涵盖数据准备、文本预处理、分词、去除停用词等常见任务,并通过代码示例详细解释。同时,针对常见的报错如`MemoryError`、`ValueError`和`KeyError`提供了解决方案。适合初学者逐步掌握Pandas与NLP结合的技巧。
70 20