MySQL高级篇——关联查询和子查询优化

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 左外连接:优先右表创建索引,连接字段类型要一致、内连接:驱动表由数据量和索引决定、 join语句原理、子查询优化:拆开查询或优化成连接查询

 导航:

【Java笔记+踩坑汇总】Java基础+JavaWeb+SSM+SpringBoot+SpringCloud+瑞吉外卖/谷粒商城/学成在线+设计模式+面试题汇总+性能调优/架构设计+源码解析

目录

1. 关联查询优化

1.0 优化方案

1.1 数据准备

1.2 左外连接:优先右表创建索引,连接字段类型要一致

1.3 内连接:驱动表由数据量和索引决定

1.4 join语句原理

2. 子查询优化:拆开查询或优化成连接查询


1. 关联查询优化

1.0 优化方案

  • 外连接小表驱动大表:LEFT JOIN 时,选择小表作为驱动表, 大表作为被驱动表 。减少外层循环的次数。
  • 内连接驱动表由优化器决定:INNER JOIN 时,MySQL会自动将 小结果集的表选为驱动表 。选择相信MySQL优化策略。
  • 被驱动表优先创建索引:被驱动表的JOIN字段要创建索引;
  • 两表连接字段类型必须一致:两个表JOIN字段数据类型保持绝对一致。防止自动类型转换导致索引失效。
  • 关联替代子查询:能够直接多表关联的尽量直接关联,不用子查询。(减少查询的趟数)。子查询是一个SELECT查询的结果作为另一个SELECT语句的条件。
  • 多次查询代替子查询:不建议使用子查询,建议将子查询SQL拆开结合程序多次查询,或使用 JOIN 来代替子查询。
  • 衍生表建不了索引

1.1 数据准备

# 分类
CREATE TABLE IF NOT EXISTS `type` (
`id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
`card` INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (`id`)
);
#图书
CREATE TABLE IF NOT EXISTS `book` (
`bookid` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
`card` INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (`bookid`)
);
#向分类表中添加20条记录
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
#向图书表中添加20条记录
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));

image.gif

1.2 左外连接:优先右表创建索引,连接字段类型要一致

优先右表创建索引:因为左表是查所有数据,右表是按条件查询,所以右表的条件字段创建索引价值更高一点。

连接字段类型要一致:两个表的card字段一定要是同一类型,如果类型不同会导致隐式类型转换从而索引失效。

验证:

EXPLAIN 分析左外连接

EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
image.gif

image.gif

结论:type 有All,全表扫描。

右表创建索引优化:

#ALTER TABLE book ADD INDEX Y ( card); #【被驱动表】,可以避免全表扫描
CREATE INDEX Y ON book(card);
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
image.gif

image.gif

可以看到第二行的 type 变为了 ref,rows 也变成了优化比较明显。这是由左连接特性决定的。LEFT JOIN 条件用于确定如何从右表搜索行,左边一定都有,所以 右边是我们的关键点,一定需要建立索引

表创建索引优化:

ALTER TABLE `type` ADD INDEX X (card); #【驱动表】,无法避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
image.gif

image.gif

接着:

DROP INDEX Y ON book;
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
image.gif

image.gif

1.3 内连接:驱动表由数据量和索引决定

内连接查到的是交集,两个表谁做驱动表查的结果是一样的。所以查询优化器会根据查询成本选择驱动表。驱动表就是主表,被驱动表就是从表

驱动表的选择依据:

  • 没索引的表:当只有一个表有索引时,查询优化器会选择没索引的表作为驱动表。
  • 小表:当两个表都有或都没有索引时,数据量小的表为驱动表。

验证:

drop index X on type;
drop index Y on book;(如果已经删除了可以不用再执行该操作)
image.gif

inner join不加索引(MySQL自动选择驱动表)

EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
image.gif

image.gif

book表添加索引优化,可以看到被驱动表是book表:

ALTER TABLE book ADD INDEX Y (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
image.gif

image.gif

type表添加索引, 可以看到被驱动表是type表:

ALTER TABLE type ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
image.gif

image.gif

对于内连接来说,查询优化器可以决定谁作为驱动表,谁作为被驱动表出现的

删除type表索引,发现

DROP INDEX X ON `type`;
EXPLAIN SELECT SQL_NO_CACHE * FROM TYPE INNER JOIN book ON type.card=book.card;
image.gif

image.gif

接着:

ALTER TABLE `type` ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card=book.card;
image.gif

image.gif

接着:

#向图书表中添加20条记录
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
ALTER TABLE book ADD INDEX Y (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON `type`.card = book.card;
image.gif

image.gif

图中发现,由于type表数据大于book表数据,MySQL选择将type作为被驱动表。

1.4 join语句原理

join方式连接多个表,本质就是各个表之间数据的循环匹配。MySQL5.5版本之前,MySQL只支持一种表间关联方式,就是嵌套循环(Nested Loop Join)。如果关联表的数据量很大,则join关联的执行时间会很长。在MySQL5.5以后的版本中,MySQL通过引入BNLJ算法来优化嵌套执行。

1. 驱动表和被驱动表

驱动表就是主表,被驱动表就是从表、非驱动表。

  • 对于内连接来说:
SELECT * FROM A JOIN B ON ...

image.gif

A一定是驱动表吗?不一定,优化器会根据你查询语句做优化,决定先查哪张表。先查询的那张表就是驱动表,反之就是被驱动表。通过explain关键字可以查看。

  • 对于外连接来说:
SELECT * FROM A LEFT JOIN B ON ...
# 或
SELECT * FROM B RIGHT JOIN A ON ...

image.gif

通常,大家会认为A就是驱动表,B就是被驱动表。但也未必。测试如下:

CREATE TABLE a(f1 INT, f2 INT, INDEX(f1)) ENGINE=INNODB;
CREATE TABLE b(f1 INT, f2 INT) ENGINE=INNODB;
INSERT INTO a VALUES(1,1),(2,2),(3,3),(4,4),(5,5),(6,6);
INSERT INTO b VALUES(3,3),(4,4),(5,5),(6,6),(7,7),(8,8);
SELECT * FROM b;
# 测试1
EXPLAIN SELECT * FROM a LEFT JOIN b ON(a.f1=b.f1) WHERE (a.f2=b.f2);
# 测试2
EXPLAIN SELECT * FROM a LEFT JOIN b ON(a.f1=b.f1) AND (a.f2=b.f2);

image.gif

2. Simple Nested-Loop Join (简单嵌套循环连接)

算法相当简单,从表A中取出一条数据1,遍历表B,将匹配到的数据放到result.. 以此类推,驱动表A中的每一条记录与被驱动表B的记录进行判断:

image.gif

可以看到这种方式效率是非常低的,以上述表A数据100条,表B数据1000条计算,则A*B=10万次。开销统计如下:

开销统计 SNLJ
外表扫描次数 1
内表扫描次数 A
读取记录数 A+B * A
JOIN比较次数 B * A
回表读取记录次数 0

当然mysql肯定不会这么粗暴的去进行表的连接,所以就出现了后面的两种对Nested-Loop Join优化算法。

3. Index Nested-Loop Join (索引嵌套循环连接)

Index Nested-Loop Join其优化的思路主要是为了减少内存表数据的匹配次数,所以要求被驱动表上必须有索引才行。通过外层表匹配条件直接与内层表索引进行匹配,避免和内存表的每条记录去进行比较,这样极大的减少了对内存表的匹配次数。

image.gif

驱动表中的每条记录通过被驱动表的索引进行访问,因为索引查询的成本是比较固定的,故mysql优化器都倾向于使用记录数少的表作为驱动表(外表)。

image.gif

如果被驱动表加索引,效率是非常高的,但如果索引不是主键索引,所以还得进行一次回表查询。相比,被驱动表的索引是主键索引,效率会更高。

4. Block Nested-Loop Join(块嵌套循环连接)

image.gif

注意:

这里缓存的不只是关联表的列,select后面的列也会缓存起来。

在一个有N个join关联的sql中会分配N-1个join buffer。所以查询的时候尽量减少不必要的字段,可以让join buffer中可以存放更多的列。

image.gif

image.gif

参数设置:

  • block_nested_loop

通过show variables like '%optimizer_switch% 查看 block_nested_loop状态。默认是开启的。

  • join_buffer_size

驱动表能不能一次加载完,要看join buffer能不能存储所有的数据,默认情况下join_buffer_size=256k

mysql> show variables like '%join_buffer%';

image.gif

join_buffer_size的最大值在32位操作系统可以申请4G,而在64位操作系统下可以申请大于4G的Join Buffer空间(64位Windows除外,其大值会被截断为4GB并发出警告)。

5. Join小结

1、整体效率比较:INLJ > BNLJ > SNLJ

2、永远用小结果集驱动大结果集(其本质就是减少外层循环的数据数量)(小的度量单位指的是表行数 * 每行大小)

select t1.b,t2.* from t1 straight_join t2 on (t1.b=t2.b) where t2.id<=100; # 推荐
select t1.b,t2.* from t2 straight_join t1 on (t1.b=t2.b) where t2.id<=100; # 不推荐

image.gif

3、为被驱动表匹配的条件增加索引(减少内存表的循环匹配次数)

4、增大join buffer size的大小(一次索引的数据越多,那么内层包的扫描次数就越少)

5、减少驱动表不必要的字段查询(字段越少,join buffer所缓存的数据就越多)

6. Hash Join

从MySQL的8.0.20版本开始将废弃BNLJ,因为从MySQL8.0.18版本开始就加入了hash join默认都会使用hash join

  • Nested Loop:
    对于被连接的数据子集较小的情况,Nested Loop是个较好的选择。
  • Hash Join是做大数据集连接时的常用方式,优化器使用两个表中较小(相对较小)的表利用Join Key在内存中建立散列表,然后扫描较大的表并探测散列表,找出与Hash表匹配的行。
  • 这种方式适合于较小的表完全可以放于内存中的情况,这样总成本就是访问两个表的成本之和。
  • 在表很大的情况下并不能完全放入内存,这时优化器会将它分割成若干不同的分区,不能放入内存的部分就把该分区写入磁盘的临时段,此时要求有较大的临时段从而尽量提高I/O的性能。
  • 它能够很好的工作于没有索引的大表和并行查询的环境中,并提供最好的性能。大多数人都说它是Join的重型升降机。Hash Join只能应用于等值连接(如WHERE A.COL1 = B.COL2),这是由Hash的特点决定的。

image.gif

2. 子查询优化:拆开查询或优化成连接查询

MySQL从4.1版本开始支持子查询,使用子查询可以进行SELECT语句的嵌套查询,即一个SELECT查询的结果作为另一个SELECT语句的条件。 子查询可以一次性完成很多逻辑上需要多个步骤才能完成的SQL操作 。

子查询是 MySQL 的一项重要的功能,可以帮助我们通过一个 SQL 语句实现比较复杂的查询。但是,子查询的执行效率不高。原因:

① 执行子查询时,MySQL需要为内层查询语句的查询结果建立一个临时表 ,然后外层查询语句从临时表中查询记录。查询完毕后,再撤销这些临时表 。这样会消耗过多的CPU和IO资源,产生大量的慢查询。

② 子查询的结果集存储的临时表,不论是内存临时表还是磁盘临时表都 不会存在索引 ,所以查询性能会 受到一定的影响。

③ 对于返回结果集比较大的子查询,其对查询性能的影响也就越大。

在MySQL中,可以使用连接(JOIN)查询来替代子查询。连接查询 不需要建立临时表 ,其 速度比子查询 要快 ,如果查询中使用索引的话,性能就会更好。

举例1:查询学生表中是班长的学生信息

  • 使用子查询
# 创建班级表中班长的索引
CREATE INDEX idx_monitor ON class(monitor);
EXPLAIN SELECT * FROM student stu1
WHERE stu1.`stuno` IN (
SELECT monitor
FROM class c
WHERE monitor IS NOT NULL
)

image.gif

  • 推荐使用多表查询
EXPLAIN SELECT stu1.* FROM student stu1 JOIN class c
ON stu1.`stuno` = c.`monitor`
WHERE c.`monitor` is NOT NULL;

image.gif

举例2:取所有不为班长的同学

  • 不推荐
EXPLAIN SELECT SQL_NO_CACHE a.*
FROM student a
WHERE a.stuno NOT IN (
    SELECT monitor FROM class b
    WHERE monitor IS NOT NULL
);

image.gif

执行结果如下:

image.gif

  • 推荐:
EXPLAIN SELECT SQL_NO_CACHE a.*
FROM student a LEFT OUTER JOIN class b
ON a.stuno = b.monitor
WHERE b.monitor IS NULL;

image.gif

image.gif

结论:尽量不要使用NOT IN或者NOT EXISTS,用LEFT JOIN xxx ON xx WHERE xx IS NULL替代


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
1月前
|
SQL 缓存 监控
MySQL缓存机制:查询缓存与缓冲池优化
MySQL缓存机制是提升数据库性能的关键。本文深入解析了MySQL的缓存体系,包括已弃用的查询缓存和核心的InnoDB缓冲池,帮助理解缓存优化原理。通过合理配置,可显著提升数据库性能,甚至达到10倍以上的效果。
|
1月前
|
SQL 存储 关系型数据库
MySQL体系结构详解:一条SQL查询的旅程
本文深入解析MySQL内部架构,从SQL查询的执行流程到性能优化技巧,涵盖连接建立、查询处理、执行阶段及存储引擎工作机制,帮助开发者理解MySQL运行原理并提升数据库性能。
|
29天前
|
SQL 关系型数据库 MySQL
MySQL的查询操作语法要点
储存过程(Stored Procedures) 和 函数(Functions) : 储存过程和函数允许用户编写 SQL 脚本执行复杂任务.
159 14
|
1月前
|
SQL 关系型数据库 MySQL
MySQL的查询操作语法要点
以上概述了MySQL 中常见且重要 的几种 SQL 查询及其相关概念 这些知识点对任何希望有效利用 MySQL 进行数据库管理工作者都至关重要
77 15
|
1月前
|
SQL 监控 关系型数据库
SQL优化技巧:让MySQL查询快人一步
本文深入解析了MySQL查询优化的核心技巧,涵盖索引设计、查询重写、分页优化、批量操作、数据类型优化及性能监控等方面,帮助开发者显著提升数据库性能,解决慢查询问题,适用于高并发与大数据场景。
|
1月前
|
SQL 关系型数据库 MySQL
MySQL入门指南:从安装到第一个查询
本文为MySQL数据库入门指南,内容涵盖从安装配置到基础操作与SQL语法的详细教程。文章首先介绍在Windows、macOS和Linux系统中安装MySQL的步骤,并指导进行初始配置和安全设置。随后讲解数据库和表的创建与管理,包括表结构设计、字段定义和约束设置。接着系统介绍SQL语句的基本操作,如插入、查询、更新和删除数据。此外,文章还涉及高级查询技巧,包括多表连接、聚合函数和子查询的应用。通过实战案例,帮助读者掌握复杂查询与数据修改。最后附有常见问题解答和实用技巧,如数据导入导出和常用函数使用。适合初学者快速入门MySQL数据库,助力数据库技能提升。
|
2月前
|
存储 关系型数据库 MySQL
使用命令行cmd查询MySQL表结构信息技巧分享。
掌握了这些命令和技巧,您就能快速并有效地从命令行中查询MySQL表的结构信息,进而支持数据库维护、架构审查和优化等工作。
249 9
|
2月前
|
缓存 关系型数据库 MySQL
降低MySQL高CPU使用率的优化策略。
通过上述方法不断地迭代改进,在实际操作中需要根据具体场景做出相对合理判断。每一步改进都需谨慎评估其变动可能导致其他方面问题,在做任何变动前建议先在测试环境验证其效果后再部署到生产环境中去。
121 6
|
1月前
|
SQL 监控 关系型数据库
MySQL高级查询技巧:子查询、联接与集合操作
本文深入解析了MySQL高级查询的核心技术,包括子查询、联接和集合操作,通过实际业务场景展示了其语法、性能差异和适用场景,并提供大量可复用的代码示例,助你从SQL新手进阶为数据操作高手。
|
3月前
|
存储 SQL 关系型数据库
MySQL 动态分区管理:自动化与优化实践
本文介绍了如何利用 MySQL 的存储过程与事件调度器实现动态分区管理,自动化应对数据增长,提升查询性能与数据管理效率,并详细解析了分区创建、冲突避免及实际应用中的关键注意事项。
144 0

推荐镜像

更多