数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解

简介: 本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。

@[toc]

1.树

树的基本概念

image.png

结点的度:指该结点的分支个数,如结点A的度为2
树的度:指树中最大的结点度数,如该树的度为3
祖先和子孙:对于某结点来说,从根到该结点所经的所有结点称为该结点的祖先。反之,以某结点为根的所有子树上的结点称为该结点的子孙。如路径ABEH,ABE是H的祖先,BEH是A的子孙。

2.二叉树

2.1 二叉树的基本概念

复习概念:m叉树 度≤m的树
等比数列求和公式:S~n~=a~1~(1-q^n^)/(1-q)
树节点的度数即为该节点孩子的个数。

二叉树是度小于等于2的有序树。(左右子树顺序不能颠倒)

性质:

  • 对任意一棵二叉树,如果用n~0~表示叶子结点的数量,用n~2~表示度为2的结点的数量,则有n~0~=n~2~+1
  • 非空二叉树第k层最多有2^k-1^个结点
  • 深度为h的二叉树最多有2^h^-1个结点

推导
假设树中结点总数为n,则
n=n~0~+n~1~+n~2~ (二叉树结点总数=度为0的结点数+度为1的结点数+度为2的结点数)
n=n~1~+2n~2~+1(树的结点总数=总度数+1)总度数=n*度为n结点数之和(二叉树是0-2)
上面两个方程作差即得到n~0~=n~2~+1

二叉树的五种状态:
image.png

2.2 满二叉树

顾名思义:每一个非叶子结点的结点的度都是2
一棵高度为h,且含有2^h^-1个结点的树

推导:2^0^+2^1^+.....2^n^=1(1-2^n^)(1-2)=2^n^-1

特点:
:one:只有最后一层有叶子结点
:two:不存在度为1度结点
:three:按层序从1开始编号,结点i的左孩子为2i,右孩子为2i+1,结点i的父结点为⌊i/2⌋

2.3 完全二叉树

完全二叉树是指从左到右从上到下依次补满全部结点的树,停止于任意位置,序号一一对应。
结论:满二叉树是一种特殊的完全二叉树

image.png

特点:

  • 若完全二叉树的深度为h,则它的前h-1层全是满的
  • 只有最后两层可能有叶子结点,且最底层的叶子结点依次排列在最左边。
  • 最多只有一个度为1的点
  • 有n个结点的完全二叉树的深度⌊ log~2~n⌋+1⌈ log~2~n+1⌉

    推导&解释
    使用这两个公式都可以通过结点数计算出完全二叉树的高度
    推导过程:⌈log~2~(n+1)⌉
    上取整通过≤最大值证明出
    结点n最大为2^h^-1,必然也肯定大于下一高度的最大值2^h-1^-1
    2^h-1^-1<n≤2^h^-1
    中间值+1后,取log2,并且上取整,满足该条件
    ⌈log~2~(n+1)⌉

推导过程:⌊log~2~n⌋+1
上取整通过≥最小值证明出
结点n最少的可能就是上一层满了,下一层一个,即2^h-1^-1+1=2^h-1^,肯定小于结点最大值+1
2^h-1^≤n<2^h^
取log2,下取整,再+1,即证毕,⌊log~2~n⌋+1

  • 对于完全二叉树,由结点数就可以推出各个度的结点数的个数。(n~0~,n~1~,n~2~)

    推导:记忆是困难的,通过推导辅助记忆
    (1) 完全二叉树最多只有一个度为1度结点(完全二叉树的性质)推出 完全二叉树度为1度结点要么是0,要么是1.
    (2)n~0~=n~2~+1推出n~0~+n~2~=n~2~+1+n~2~=2n~2~+1推出一定是奇数
    最终推,若完全二叉树有2k个结点(偶数)个结点,即n~0~+n~1~+n~2~=偶数,n~0~+n~2~=奇数,所以n~1~=1,n~0~=k,n~2~=k-1.若是奇数个结点(2k-1)个结点,n~1~=0,n~0~和n~2~同偶数,写法是不变的

2.4 二叉排序树

左子树结点值<根节点值<右子树结点值

image.png

2.5 平衡二叉树

平衡二叉树:树上任一结点的左子树和右子树的深度之差不超过1

3.二叉树的存储结构

3.1 二叉树的顺序存储

用一组连续存储单元自上而下,自左到右存储树上的结点元素。比较适合完全二叉树和满二叉树。对于一般的二叉树,需添加一些不存在的空结点。

#define MaxSize 100
struct TreeNode{
   
   
ElemType value; //结点中的数据元素
bool isempty;   //结点是否为空,当所存储的二叉树不是完全二叉树的时候使用这个。
}
TreeNode t[MaxSize];

image.png

如果是非完全二叉树,那么为了找到他的左孩子,右孩子,父结点,我们仍要按照完全二叉树的存储结构让序号对应起来,唯一不同的点是,我们无法根据序号,判定是否存在左孩子还是右孩子了,所以我们使用bool类型isempty,来实现判断

3.2 二叉树的链式存储

typedef struct BiTNode{
   
   
    ElemType data;
    struct BiTNode *lchild,*rchild; //左孩子指针,右孩子指针
}BiTNode,*BiTree;

在二叉链表中,链表的头指针T指向根节点。T->data表示根结点的值
image.png

n个结点的二叉链表共有n+1个空链域

每个结点都有2个指针(链域),一共有2n个链域,但是使用的链域是结点数-1,即n-1,所以2n-n+1=n+1,有n+1个空链域,这些空链域用来构造线索二叉树

但是如果想找到指定结点的父节点,只能从根开始遍历寻找,
改进方法是加上一个父节点指针,struct BiTNode *parent; 父节点指针,改进之后的链表就是三叉链表

相关文章
|
8月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
264 10
 算法系列之数据结构-二叉树
|
8月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
215 3
 算法系列之数据结构-Huffman树
|
8月前
|
存储 自然语言处理 数据库
【数据结构进阶】AVL树深度剖析 + 实现(附源码)
在深入探讨了AVL树的原理和实现后,我们不难发现,这种数据结构不仅优雅地解决了传统二叉搜索树可能面临的性能退化问题,还通过其独特的平衡机制,确保了在任何情况下都能提供稳定且高效的查找、插入和删除操作。
646 19
|
10月前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
336 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
10月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
189 10
|
10月前
|
存储 安全 C语言
【C语言程序设计——选择结构程序设计】预测你的身高(头歌实践教学平台习题)【合集】
分支的语句,这可能不是预期的行为,这种现象被称为“case穿透”,在某些特定情况下可以利用这一特性来简化代码,但在大多数情况下,需要谨慎使用。编写一个程序,该程序需输入个人数据,进而预测其成年后的身高。根据提示,在右侧编辑器补充代码,计算并输出最终预测的身高。分支下的语句,提示用户输入无效。常量的值必须是唯一的,且在同一个。语句的作用至关重要,如果遗漏。开始你的任务吧,祝你成功!,程序将会继续执行下一个。常量都不匹配,就会执行。来确保程序的正确性。
362 10
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
282 59
|
5月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
108 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
10月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
478 77