数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解

简介: 本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。

@[toc]

1.树

树的基本概念

image.png

结点的度:指该结点的分支个数,如结点A的度为2
树的度:指树中最大的结点度数,如该树的度为3
祖先和子孙:对于某结点来说,从根到该结点所经的所有结点称为该结点的祖先。反之,以某结点为根的所有子树上的结点称为该结点的子孙。如路径ABEH,ABE是H的祖先,BEH是A的子孙。

2.二叉树

2.1 二叉树的基本概念

复习概念:m叉树 度≤m的树
等比数列求和公式:S~n~=a~1~(1-q^n^)/(1-q)
树节点的度数即为该节点孩子的个数。

二叉树是度小于等于2的有序树。(左右子树顺序不能颠倒)

性质:

  • 对任意一棵二叉树,如果用n~0~表示叶子结点的数量,用n~2~表示度为2的结点的数量,则有n~0~=n~2~+1
  • 非空二叉树第k层最多有2^k-1^个结点
  • 深度为h的二叉树最多有2^h^-1个结点

推导
假设树中结点总数为n,则
n=n~0~+n~1~+n~2~ (二叉树结点总数=度为0的结点数+度为1的结点数+度为2的结点数)
n=n~1~+2n~2~+1(树的结点总数=总度数+1)总度数=n*度为n结点数之和(二叉树是0-2)
上面两个方程作差即得到n~0~=n~2~+1

二叉树的五种状态:
image.png

2.2 满二叉树

顾名思义:每一个非叶子结点的结点的度都是2
一棵高度为h,且含有2^h^-1个结点的树

推导:2^0^+2^1^+.....2^n^=1(1-2^n^)(1-2)=2^n^-1

特点:
:one:只有最后一层有叶子结点
:two:不存在度为1度结点
:three:按层序从1开始编号,结点i的左孩子为2i,右孩子为2i+1,结点i的父结点为⌊i/2⌋

2.3 完全二叉树

完全二叉树是指从左到右从上到下依次补满全部结点的树,停止于任意位置,序号一一对应。
结论:满二叉树是一种特殊的完全二叉树

image.png

特点:

  • 若完全二叉树的深度为h,则它的前h-1层全是满的
  • 只有最后两层可能有叶子结点,且最底层的叶子结点依次排列在最左边。
  • 最多只有一个度为1的点
  • 有n个结点的完全二叉树的深度⌊ log~2~n⌋+1⌈ log~2~n+1⌉

    推导&解释
    使用这两个公式都可以通过结点数计算出完全二叉树的高度
    推导过程:⌈log~2~(n+1)⌉
    上取整通过≤最大值证明出
    结点n最大为2^h^-1,必然也肯定大于下一高度的最大值2^h-1^-1
    2^h-1^-1<n≤2^h^-1
    中间值+1后,取log2,并且上取整,满足该条件
    ⌈log~2~(n+1)⌉

推导过程:⌊log~2~n⌋+1
上取整通过≥最小值证明出
结点n最少的可能就是上一层满了,下一层一个,即2^h-1^-1+1=2^h-1^,肯定小于结点最大值+1
2^h-1^≤n<2^h^
取log2,下取整,再+1,即证毕,⌊log~2~n⌋+1

  • 对于完全二叉树,由结点数就可以推出各个度的结点数的个数。(n~0~,n~1~,n~2~)

    推导:记忆是困难的,通过推导辅助记忆
    (1) 完全二叉树最多只有一个度为1度结点(完全二叉树的性质)推出 完全二叉树度为1度结点要么是0,要么是1.
    (2)n~0~=n~2~+1推出n~0~+n~2~=n~2~+1+n~2~=2n~2~+1推出一定是奇数
    最终推,若完全二叉树有2k个结点(偶数)个结点,即n~0~+n~1~+n~2~=偶数,n~0~+n~2~=奇数,所以n~1~=1,n~0~=k,n~2~=k-1.若是奇数个结点(2k-1)个结点,n~1~=0,n~0~和n~2~同偶数,写法是不变的

2.4 二叉排序树

左子树结点值<根节点值<右子树结点值

image.png

2.5 平衡二叉树

平衡二叉树:树上任一结点的左子树和右子树的深度之差不超过1

3.二叉树的存储结构

3.1 二叉树的顺序存储

用一组连续存储单元自上而下,自左到右存储树上的结点元素。比较适合完全二叉树和满二叉树。对于一般的二叉树,需添加一些不存在的空结点。

#define MaxSize 100
struct TreeNode{
   
   
ElemType value; //结点中的数据元素
bool isempty;   //结点是否为空,当所存储的二叉树不是完全二叉树的时候使用这个。
}
TreeNode t[MaxSize];

image.png

如果是非完全二叉树,那么为了找到他的左孩子,右孩子,父结点,我们仍要按照完全二叉树的存储结构让序号对应起来,唯一不同的点是,我们无法根据序号,判定是否存在左孩子还是右孩子了,所以我们使用bool类型isempty,来实现判断

3.2 二叉树的链式存储

typedef struct BiTNode{
   
   
    ElemType data;
    struct BiTNode *lchild,*rchild; //左孩子指针,右孩子指针
}BiTNode,*BiTree;

在二叉链表中,链表的头指针T指向根节点。T->data表示根结点的值
image.png

n个结点的二叉链表共有n+1个空链域

每个结点都有2个指针(链域),一共有2n个链域,但是使用的链域是结点数-1,即n-1,所以2n-n+1=n+1,有n+1个空链域,这些空链域用来构造线索二叉树

但是如果想找到指定结点的父节点,只能从根开始遍历寻找,
改进方法是加上一个父节点指针,struct BiTNode *parent; 父节点指针,改进之后的链表就是三叉链表

相关文章
|
5天前
|
网络协议 编译器 Linux
【C语言】结构体内存对齐:热门面试话题
【C语言】结构体内存对齐:热门面试话题
|
1月前
|
存储 编译器 C语言
C语言存储类详解
在 C 语言中,存储类定义了变量的生命周期、作用域和可见性。主要包括:`auto`(默认存储类,块级作用域),`register`(建议存储在寄存器中,作用域同 `auto`,不可取地址),`static`(生命周期贯穿整个程序,局部静态变量在函数间保持值,全局静态变量限于本文件),`extern`(声明变量在其他文件中定义,允许跨文件访问)。此外,`typedef` 用于定义新数据类型名称,提升代码可读性。 示例代码展示了不同存储类变量的使用方式,通过两次调用 `function()` 函数,观察静态变量 `b` 的变化。合理选择存储类可以优化程序性能和内存使用。
142 82
|
16天前
|
存储 Java
java数据结构,线性表链式存储(单链表)的实现
文章讲解了单链表的基本概念和Java实现,包括头指针、尾节点和节点结构。提供了实现代码,包括数据结构、接口定义和具体实现类。通过测试代码演示了单链表的基本操作,如添加、删除、更新和查找元素,并总结了操作的时间复杂度。
java数据结构,线性表链式存储(单链表)的实现
|
5天前
|
存储 编译器 C++
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
|
1天前
|
存储 算法
【数据结构】二叉树——顺序结构——堆及其实现
【数据结构】二叉树——顺序结构——堆及其实现
|
4天前
|
存储 C语言
C语言中的浮点数存储:深入探讨
C语言中的浮点数存储:深入探讨
|
1月前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
103 8
|
16天前
|
存储 Java
java数据结构,线性表顺序存储(数组)的实现
文章介绍了Java中线性表顺序存储(数组)的实现。线性表是数据结构的一种,它使用数组来实现。文章详细描述了线性表的基本操作,如增加、查找、删除、修改元素,以及其他操作如遍历、清空、求长度等。同时,提供了完整的Java代码实现,包括MyList接口和MyLinearList实现类。通过main函数的测试代码,展示了如何使用这些方法操作线性表。
|
12月前
|
存储 缓存 C语言
数据结构——双链表(C语言)
数据结构——双链表(C语言)
|
4月前
|
存储
数据结构——双向链表(C语言版)
数据结构——双向链表(C语言版)
29 2