python序列化: json & pickle & shelve 模块

简介: python序列化: json & pickle & shelve 模块

一、json & pickle & shelve 模块

json,用于字符串 和 python数据类型间进行转换

pickle,用于python特有的类型 和 python的数据类型间进行转换

Json模块提供了四个功能:dumps、dump、loads、load

pickle模块提供了四个功能:dumps、dump、loads、load


json模块:
JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:

 

下面通过一些示例来学习:

首先我们来看json的dumps和loads方法

s1={"k1":"v1"}
st=json.dumps(s1)
print(st,type(st))
s='{"k1":"v1"}'
dic=json.loads(s)
print(dic,type(dic))

输出结果为:

{"k1": "v1"} <class 'str'>
{'k1': 'v1'} <class 'dict'>

可以看出json的dumps方法处理数据时会将数据转换为字符类型,loads则会重新还原它的类型。

再来看json的dump和load方法,通过示例来了解:


li=[11,22,33]
li=json.dump(li,open('db','w'))
li=json.load(open('db','r'))
print(li,type(li))


Json模块dumps、loads、load、dump的区别:

load,dump可加载外部文件,处理文件的数据,dumps,loads主要处理内存中的数据

 

pickle模块:

 

 

 

下面我们来看pickle的dumps和loads方法,通过示例我们来了解:


import pickle
i=[11,22,33]
r=pickle.dumps(li)
print(r)
result=pickle.loads(r)
print(result)

 结果为:

b'\x80\x03]q\x00(K\x0bK\x16K!e.'
[11, 22, 33]

pickle的dupms方法会将数据存为pickle特有的数据类型 

再看pickle的dump和load方法,通过示例我们来了解:


import pickle
i=[11,22,33]
pickle.dump(i,open('db','wb'))
result=pickle.load(open('db','rb'))
print(result)

需要注意的是dump文件或者load文件是需要使用二进制。


shelve模块

shelve是一额简单的数据存储方案,他只有一个函数就是open(),这个函数接收一个参数就是文件名,然后返回一个shelf对象,你可以用他来存储东西,就可以简单的把他当作一个字典,当你存储完毕的时候,就调用close函数来关闭。

还是来通过示例来了解:

f = shelve.open('user.db','wc')
f['baidu'] = 'www.baidu.com'
f['qq'] = 'www.qq.com'
f['360'] = 'www.360.cn'
f.close()
f = shelve.open('user.db','a+')
print(f['baidu'],f['qq'],f['360'])

结果为:

www.baidu.com
www.qq.com
www.360.cn

对shelve序列化数据进行更新操作,通过示例来进行学习:

 


f=shelve.open('user_db','c')
f["user"]={"数码电器": {"打印机": "3600", "手机": "3800", "电脑": "8000", "照相机": "10000"},
     "服装百货": {"方便面": "4", "夹克": "300", "牛仔裤": "288", "王老吉": "6"},
     "化妆品": {"韩束": "388", "欧诗漫": "666", "欧莱雅": "888", "百雀羚": "259"},
     "汽车":{"帕沙特": "250000", "奇瑞": "100000", "特斯拉": "999999", "宝马X5": "550000"}
     }
a=(f["user"])
a.update({"食品":{"猪肉":"12","牛肉":"28","鸡肉":"8","羊肉":"32",}})
f["user"]=a
f.close()
f=shelve.open('user_db','a')
print(f["user"])



相关文章
|
2月前
|
JSON API 数据格式
Python采集京东商品评论API接口示例,json数据返回
下面是一个使用Python采集京东商品评论的完整示例,包括API请求、JSON数据解析
|
2月前
|
存储 JSON API
Python与JSON:结构化数据的存储艺术
Python字典与JSON格式结合,为数据持久化提供了便捷方式。通过json模块,可轻松实现数据序列化与反序列化,支持跨平台数据交换。适用于配置管理、API通信等场景,兼具可读性与高效性,是Python开发中不可或缺的数据处理工具。
132 0
|
10天前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
10天前
|
安全 大数据 程序员
Python operator模块的methodcaller:一行代码搞定对象方法调用的黑科技
`operator.methodcaller`是Python中处理对象方法调用的高效工具,替代冗长Lambda,提升代码可读性与性能。适用于数据过滤、排序、转换等场景,支持参数传递与链式调用,是函数式编程的隐藏利器。
52 4
|
11天前
|
XML JSON 编解码
从JSON到Protobuf,深入序列化方案的选型与原理
序列化是数据跨边界传输的“翻译官”,将结构化数据转为二进制流。JSON可读性强但冗余大,Protobuf高效紧凑、性能优越,成主流选择。不同场景需权衡标准化与定制优化,选最合适方案。
125 3
|
1月前
|
JSON 安全 API
Python处理JSON数据的最佳实践:从基础到进阶的实用指南
JSON作为数据交换通用格式,广泛应用于Web开发与API交互。本文详解Python处理JSON的10个关键实践,涵盖序列化、复杂结构处理、性能优化与安全编程,助开发者高效应对各类JSON数据挑战。
135 1
|
1月前
|
存储 安全 数据处理
Python 内置模块 collections 详解
`collections` 是 Python 内置模块,提供多种高效数据类型,如 `namedtuple`、`deque`、`Counter` 等,帮助开发者优化数据处理流程,提升代码可读性与性能,适用于复杂数据结构管理与高效操作场景。
102 0
|
2月前
|
JSON 人工智能 Go
在Golang中序列化JSON字符串的教程
在Golang中,使用`json.Marshal()`可将数据结构序列化为JSON格式。若直接对JSON字符串进行序列化,会因转义字符导致错误。解决方案包括使用`[]byte`或`json.RawMessage()`来避免双引号被转义,从而正确实现JSON的序列化与反序列化。
128 7
|
2月前
|
数据安全/隐私保护 Python
抖音私信脚本app,协议私信群发工具,抖音python私信模块
这个实现包含三个主要模块:抖音私信核心功能类、辅助工具类和主程序入口。核心功能包括登录
|
4月前
|
存储 安全 IDE
说一说序列化与反序列化中存在的问题
本文详细解析了Java中的序列化机制,包括序列化的概念、实现方式及应用场景。通过Student类的实例演示了对象的序列化与反序列化过程,并分析了`Serializable`接口的作用以及`serialVersionUID`的重要意义。此外,文章还探讨了如何通过自定义`readObject()`方法增强序列化的安全性,以及解决可序列化单例模式中可能产生的多实例问题。最后提供了代码示例和运行结果,帮助读者深入理解序列化的原理与实践技巧。
118 2

推荐镜像

更多