时序=图像?无需微调,视觉MAE跨界比肩最强时序预测大模型

简介: 【10月更文挑战第15天】《VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters》提出了一种创新方法,通过将时序数据转化为图像,利用视觉掩码自编码器(MAE)进行自监督预训练,实现时序预测。该模型在未进行任何时序域适配的情况下,展现了出色的零样本预测性能,并且通过少量微调即可达到最先进水平。这一研究为时序预测领域带来了新希望,同时也引发了关于模型解释性和可信度的讨论。

在人工智能领域,时序预测(Time Series Forecasting,TSF)一直是一个备受关注的研究方向。它广泛应用于金融、气象、医疗等多个领域,旨在通过分析历史数据来预测未来的趋势和变化。然而,这个领域面临着诸多挑战,比如数据的跨域差异和域内异质性,这些都给时序预测模型的构建带来了不小的困难。

为了应对这些挑战,研究人员提出了各种方法,比如微调大型语言模型(LLMs)或者构建大规模的时序数据集来开发时序预测的基础模型。然而,这些方法往往效果有限,无法很好地解决跨域差异和域内异质性的问题。

最近,一篇名为《VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters》的论文提出了一种全新的思路,即利用丰富的高质量自然图像来构建时序预测的基础模型。这一思路基于图像和时序数据之间的内禀相似性,通过将时序预测任务重新定义为图像重建任务,从而实现了视觉模型在时序预测领域的跨界应用。

具体来说,该论文提出了一种名为VisionTS的模型,它基于视觉掩码自编码器(MAE)进行自监督预训练。MAE是一种在计算机视觉领域广泛应用的模型,它通过在图像中随机遮挡一部分区域,然后让模型尝试重建这些被遮挡的区域来学习图像的表示。在VisionTS中,研究人员将时序数据转换为图像形式,然后利用MAE对这些图像进行预训练。

令人惊讶的是,VisionTS在没有进行任何时序域适配的情况下,就能够实现出色的零样本预测性能,与现有的时序预测基础模型相比毫不逊色。而且,通过少量的微调,VisionTS还能够进一步提高预测性能,在大多数情况下都能够达到最先进的水平。

这一发现无疑为时序预测领域带来了新的希望。它表明,视觉模型可能是一种“免费的午餐”,可以为时序预测提供强大的能力,而无需进行大量的数据收集和模型训练。此外,这一研究还为计算机视觉和时序预测之间的跨域研究提供了新的思路和方向。

然而,我们也应该看到,VisionTS的成功并不意味着时序预测领域的问题已经完全解决。首先,VisionTS的预训练依赖于大规模的图像数据集,这可能限制了它在特定领域或小规模数据集上的应用。其次,虽然VisionTS在零样本预测方面表现出色,但在实际应用中,我们往往需要对模型进行微调以适应特定的任务和数据。因此,如何在保持模型通用性的同时,提高其在特定任务上的适应性,仍然是一个值得研究的问题。

此外,VisionTS的提出也引发了一些关于模型解释性和可信度的讨论。由于VisionTS将时序数据转换为图像形式进行处理,这可能导致模型的预测结果难以解释和理解。在实际应用中,我们往往需要对模型的预测结果进行解释和验证,以确保其可靠性和可信度。因此,如何提高VisionTS等视觉模型在时序预测领域的解释性和可信度,也是一个需要进一步研究的问题。

论文地址:https://arxiv.org/abs/2408.17253

目录
相关文章
|
6月前
|
数据建模 计算机视觉
SiMBA:基于Mamba的跨图像和多元时间序列的预测模型
微软研究者提出了SiMBA,一种融合Mamba与EinFFT的新架构,用于高效处理图像和时间序列。SiMBA解决了Mamba在大型网络中的不稳定性,结合了卷积、Transformer、频谱方法和状态空间模型的优点。在ImageNet 1K上表现优越,达到84.0%的Top-1准确率,并在多变量长期预测中超越SOTA,降低了MSE和MAE。代码开源,适用于复杂任务的高性能建模。[[论文链接]](https//avoid.overfit.cn/post/c21aa5ca480b47198ee3daefdc7254bb)
989 3
|
6月前
|
物联网 网络架构
PHATGOOSE:使用LoRA Experts创建低成本混合专家模型实现零样本泛化
这篇2月的新论文介绍了Post-Hoc Adaptive Tokenwise Gating Over an Ocean of Specialized Experts (PHATGOOSE),这是一种通过利用一组专门的PEFT模块(如LoRA)实现零样本泛化的新方法
78 0
|
26天前
|
机器学习/深度学习 自然语言处理 PyTorch
LLM-Mixer: 融合多尺度时间序列分解与预训练模型,可以精准捕捉短期波动与长期趋势
近年来,大型语言模型(LLMs)在自然语言处理领域取得显著进展,研究人员开始探索将其应用于时间序列预测。Jin等人提出了LLM-Mixer框架,通过多尺度时间序列分解和预训练的LLMs,有效捕捉时间序列数据中的短期波动和长期趋势,提高了预测精度。实验结果显示,LLM-Mixer在多个基准数据集上优于现有方法,展示了其在时间序列预测任务中的巨大潜力。
54 3
LLM-Mixer: 融合多尺度时间序列分解与预训练模型,可以精准捕捉短期波动与长期趋势
|
机器学习/深度学习 人工智能
功能介绍 | AI模型训练系列之高效的样本标注
功能介绍 | AI模型训练系列之高效的样本标注
|
自然语言处理 数据处理 API
零样本文本分类应用:基于UTC的医疗意图多分类,打通数据标注-模型训练-模型调优-预测部署全流程。
零样本文本分类应用:基于UTC的医疗意图多分类,打通数据标注-模型训练-模型调优-预测部署全流程。
|
机器学习/深度学习 人工智能 监控
基于深度学习的人群密度检测系统(UI界面+YOLOv5+训练数据集)
基于深度学习的人群密度检测系统(UI界面+YOLOv5+训练数据集)
709 0
|
机器学习/深度学习 人工智能 达摩院
顶会点赞!达摩院提出时序预测新模型
顶会点赞!达摩院提出时序预测新模型
1043 0
|
机器学习/深度学习 人工智能 算法
模型部署系列 | 一文告诉你AI模型QAT量化遇到震荡问题应该如何解决呢?(一)
模型部署系列 | 一文告诉你AI模型QAT量化遇到震荡问题应该如何解决呢?(一)
644 0
|
机器学习/深度学习 人工智能 算法
模型部署系列 | 一文告诉你AI模型QAT量化遇到震荡问题应该如何解决呢?(二)
模型部署系列 | 一文告诉你AI模型QAT量化遇到震荡问题应该如何解决呢?(二)
245 0
|
机器学习/深度学习 JSON 编解码
伯克利开源首个泊车场景下的高清数据集和预测模型,支持目标识别、轨迹预测
伯克利开源首个泊车场景下的高清数据集和预测模型,支持目标识别、轨迹预测
237 0