ARTIST的中文文图生成模型问题之什么是PAI-DSW

简介: ARTIST的中文文图生成模型问题之什么是PAI-DSW

问题一:在微调ARTIST模型时,需要设置哪些主要参数?

在微调ARTIST模型时,需要设置哪些主要参数?


参考回答:

在微调ARTIST模型时,需要设置的主要参数包括学习率(learning_rate)、训练轮数(epoch_num)、随机种子(random_seed)等。此外,还需要指定输入数据的格式(input_schema)、序列长度(sequence_length)、微批次大小(micro_batch_size)等参数。这些参数的设置将影响模型的训练效果和生成图片的质量。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655953


问题二:预测时,如何指定输出的图片数量和格式?

预测时,如何指定输出的图片数量和格式?


参考回答:

在预测时,可以通过设置用户自定义参数(user_defined_parameters)中的max_generated_num来指定输出的图片数量。同时,输出的格式可以通过output_schema来定义,例如指定输出的列为文本编号(idx)、文本(text)和生成的图片的base64编码(gen_imgbase64)。这样,在预测完成后,将生成一个包含指定列和图片的base64编码的tsv文件。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655954


问题三:什么是PAI-DSW?

什么是PAI-DSW?


参考回答:

PAI-DSW(Data Science Workshop)是阿里云机器学习平台PAI开发的云上IDE,它是一个交互式的编程环境,面向不同水平的开发者,方便用户进行机器学习应用的开发和搭建。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655955


问题四:在DSW Gallery中可以找到哪些资源?

在DSW Gallery中可以找到哪些资源?


参考回答:

在DSW Gallery中,提供了各种Notebook示例,这些示例可以帮助用户轻松上手DSW,并搭建各种机器学习应用。此外,DSW Gallery中还上架了使用Transformer模型进行中文文图生成的Sample Notebook,供用户体验。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655956


问题五:阿里云机器学习团队在Transformer模型方面有什么新的进展?

阿里云机器学习团队在Transformer模型方面有什么新的进展?


参考回答:

阿里云机器学习团队在EasyNLP框架中扩展了基于Transformer的中文文图生成功能,同时开放了模型的Checkpoint。这使得开源社区的用户在资源有限的情况下,也能进行少量领域相关的微调,并进行各种艺术创作。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655957

相关文章
|
27天前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
323 109
|
2月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
182 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
6月前
|
机器学习/深度学习 人工智能 JSON
【解决方案】DistilQwen2.5-R1蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对DistilQwen2.5-R1模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过 PAI-ModelGallery 轻松实现 Qwen2.5 系列模型的训练、评测、压缩和快速部署。本文详细介绍在 PAI 平台使用 DistilQwen2.5-R1 蒸馏模型的全链路最佳实践。
|
5月前
|
人工智能 JSON 算法
【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。
|
6月前
|
人工智能 运维 API
PAI-Model Gallery云上一键部署阶跃星辰新模型Step1X-Edit
4月27日,阶跃星辰正式发布并开源图像编辑大模型 Step1X-Edit,性能达到开源 SOTA。Step1X-Edit模型总参数量为19B,实现 MLLM 与 DiT 的深度融合,在编辑精度与图像保真度上实现大幅提升,具备语义精准解析、身份一致性保持、高精度区域级控制三项关键能力;支持文字替换、风格迁移等11 类高频图像编辑任务类型。在最新发布的图像编辑基准 GEdit-Bench 中,Step1X-Edit 在语义一致性、图像质量与综合得分三项指标上全面领先现有开源模型,比肩 GPT-4o 与 Gemin。PAI-ModelGallery 支持Step1X-Edit一键部署方案。
|
6月前
|
人工智能 算法 网络安全
基于PAI+专属网关+私网连接:构建全链路Deepseek云上私有化部署与模型调用架构
本文介绍了阿里云通过PAI+专属网关+私网连接方案,帮助企业实现DeepSeek-R1模型的私有化部署。方案解决了算力成本高、资源紧张、部署复杂和数据安全等问题,支持全链路零公网暴露及全球低延迟算力网络,最终实现技术可控、成本优化与安全可靠的AI部署路径,满足企业全球化业务需求。
|
3月前
|
机器学习/深度学习 算法 安全
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
200 3
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
|
2月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
3月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。

热门文章

最新文章