AI大模型企业应用实战-Agents是什么?

简介: 【8月更文挑战第13天】

0 前言

"Agents are not only going to change how everyone interacts with computers. They're also going to upend the software industry, bringing about the biggest revolution in computing since we went from typing commands to tapping on icons." — Bill Gates

智能体(Agent)不仅会改变每个人与计算机交互的方式。它们还将颠覆软件行业,带来自我们从键入命令到点击图标以来最大的计算革命。

-- 比尔盖茨

  • 无需为不同任务使用单独软件
  • 使用日常语言来命令你的设备
  • “代理”是人工智能的高级形式
  • 未来五年将成为现实
  • 人人都有的私人助理Agent
  • 应用在干行百业之中(医疗、教育、娱乐....)

1 Agents是啥?

Al Agents是基于LLM的能够自主理解、自主规划决策、执行复杂任务的智能体,Agents不是ChatGPT的升级版,它不仅告诉你“如何做”,更会帮你去做。若各种Copilot是副驾驶,那Agents就是主驾驶。

Agents = LLM +规划技能+记忆 + 工具使用。本质上Agents是一个LLM的编排与执行系统:

一个精简的Agents决策流程,一个循环一个任务:

2 LangChain 中的 Agents 咋实现?

  1. 提出需求/问题
  2. 问题+Prompt组合
  3. ReAct Loop
  4. 查找Memory
  5. 查找可用工具
  6. 执行工具并观察结果

如有必要,重复1~6,

  1. 得到最终结果

3 最简单的 Agents 实现

3.0 需求

  • 会做数学题
  • 不知道答案时,可搜索

3.1 安装LLM

使用通义千问模型:

!pip install langchain==0.2.1  # 安装langchain
!pip install langchain-community==0.2.1  # 安装第三方集成
!pip install python-dotenv==1.0.1  # 使用 .env 文件来管理应用程序的配置和环境变量
!pip install dashscope==1.19.2  # 安装灵积模型库

定义.env文件,配置API-KEY:

import os
from dotenv import find_dotenv, load_dotenv
from langchain_community.llms import Tongyi
from langchain_core.runnables import RunnableSequence
from langchain.prompts import PromptTemplate

load_dotenv(find_dotenv())
DASHSCOPE_API_KEY = os.environ["DASHSCOPE_API_KEY"]
# 定义llm
llm = QwenTurboTongyi(temperature=1)

3.2 搭建工具

# 安装谷歌搜索包
! pip install google-search-results

import os 
os.environ["SERPAPI_API_KEY"] = "XXXX"

SERPAPI_API_KEY值即为你刚才注册的免费 Api Key

from langchain.agents import load_tools
tools = load_tools(["serpapi","llm-math"], llm=llm)

3.3 定义agent

使用小样本增强生成类型

from langchain.agents import initialize_agent
from langchain.agents import AgentType

agent = initialize_agent(
    tools,
    llm,
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,#这里有不同的类型
    verbose=True,#是否打印日志
)
agent.run("请问现任的美国总统是谁?他的年龄的平方是多少?")

目录
相关文章
|
4月前
|
机器学习/深度学习 人工智能 人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
438 121
|
4月前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
773 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
4月前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
1786 16
构建AI智能体:一、初识AI大模型与API调用
|
4月前
|
存储 人工智能 搜索推荐
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
本文介绍基于LangGraph构建的双层记忆系统,通过短期与长期记忆协同,实现AI代理的持续学习。短期记忆管理会话内上下文,长期记忆跨会话存储用户偏好与决策,结合人机协作反馈循环,动态更新提示词,使代理具备个性化响应与行为进化能力。
782 10
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
|
4月前
|
数据采集 人工智能 JSON
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
|
4月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
1047 51
|
5月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
1175 56
|
4月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
591 30
|
4月前
|
设计模式 人工智能 自然语言处理
3个月圈粉百万,这个AI应用在海外火了
不知道大家还记不记得,我之前推荐过一个叫 Agnes 的 AI 应用,也是当时在 WAIC 了解到的。
573 1

热门文章

最新文章