HanLP — HMM隐马尔可夫模型 -- 维特比(Viterbi)算法 --示例代码 - Java

简介: HanLP — HMM隐马尔可夫模型 -- 维特比(Viterbi)算法 --示例代码 - Java

Viterbi 维特比算法解决的是篱笆型的图的最短路径问题,图的节点按列组织,每列的节点数量可以不一样,每一列的节点只能和相邻列的节点相连,不能跨列相连,节点之间有着不同的距离,距离的值就不在

题目背景

从前有个村儿,村里的人的身体情况只有两种可能:健康、发烧

假设这个村儿的人没有体温计或者百度这种神奇东西,他唯一判断他身体情况的途径就是到村头我的偶像金正月的小诊所询问。月儿通过询问村民的感觉,判断她的病情,再假设村民只会回答正常、头晕或冷

有一天村里奥巴驴就去月儿那去询问了。

  • 第一天她告诉月儿她感觉正常。
  • 第二天她告诉月儿感觉有点冷。
  • 第三天她告诉月儿感觉有点头晕。
    那么问题来了,月儿如何根据阿驴的描述的情况,推断出这三天中阿驴的一个身体状态呢?

已知情况

省略训练过程,可参考 HanLP — HMM隐马尔可夫模型 -- 训练--归一化,计算概率

隐含的身体状态 = {健康,发烧}

可观察的感觉状态 = {正常,冷,头晕}

月儿预判的阿驴身体状态的概率分布(初始概率矩阵) = {健康:0.6,发烧:0.4}

月儿认为的阿驴身体健康状态的转换概率分布(转移概率矩阵) =

{
健康->健康: 0.7 ,
健康->发烧: 0.3 ,
发烧->健康:0.4 ,
发烧->发烧: 0.6
}

月儿认为的在相应健康状况条件下,阿驴的感觉的概率分布(发射概率矩阵) =

{
健康,正常:0.5 ,冷 :0.4 ,头晕: 0.1 ;
发烧,正常:0.1 ,冷 :0.3 ,头晕: 0.6
}

由上面我们可以发现,HMM的三要素都齐备了,下面就是解决问题了。

阿驴连续三天的身体感觉依次是: 正常、冷、头晕 。

过程:

第一天的时候,对每一个状态(健康或者发烧),分别求出第一天身体感觉正常的概率:P(第一天健康) = P(正常|健康)P(健康|初始情况) = 0.5 * 0.6 = 0.3 P(第一天发烧) = P(正常|发烧)P(发烧|初始情况) = 0.1 * 0.4 = 0.04

第二天的时候,对每个状态,分别求在第一天状态为健康或者发烧情况下观察到冷的最大概率。在维特比算法中,我们先要求得路径的单个路径的最大概率,然后再乘上观测概率。P(第二天健康) = max{0.30.7, 0.040.4}0.4=0.30.70.4=0.084 此时我们需要记录概率最大的路径的前一个状态,即0.084路径的前一个状态,我们在小本本上记下,第一天健康。 P(第二天发烧)=max{0.30.3, 0.040.6}0.3=0.027, 同样的在0.027这个路径上,第一天也是健康的。

第三天的时候,跟第二天一样。P(第三天健康)=max{0.0840.7, 0.0270.4}0.1=0.00588,在这条路径上,第二天是健康的。P(第三天发烧)=max{0.0840.3, 0.0270.6}0.6=0.01512,在这条路径上,第二天是健康的。

最后一天的状态概率分布即为最优路径的概率,即P(最优)=0.01512,这样我们可以得到最优路径的终点,是发烧

由最优路径开始回溯。请看我们的小本本,在求得第三天发烧概率的时候,我们的小本本上面写的是第二天健康,好了,第二天就应该是健康的状态,然后在第二天健康的情况下,我们记录的第一天是健康的。这样,我们的状态序列逆推出来了。即为:健康,健康,发烧

简略的画个图吧:

这儿的箭头指向就是一个回溯查询小本本的过程,我们在编写算法的时候,其实也得注意,每一个概率最大的单条路径上都要把前一个状态记录下来。

代码

Viterbi

package com.vipsoft.viterbi;
/**
 * 维特比算法
 * @author hankcs
 */
public class Viterbi
{
    /**
     * 求解HMM模型
     * @param obs 观测序列
     * @param states 隐状态
     * @param start_p 初始概率(隐状态)
     * @param trans_p 转移概率(隐状态)
     * @param emit_p 发射概率 (隐状态表现为显状态的概率)
     * @return 最可能的序列
     */
    public static int[] compute(int[] obs, int[] states, double[] start_p, double[][] trans_p, double[][] emit_p)
    {
        double[][] V = new double[obs.length][states.length];
        int[][] path = new int[states.length][obs.length];
        for (int y : states)
        {
            V[0][y] = start_p[y] * emit_p[y][obs[0]];
            path[y][0] = y;
        }
        for (int t = 1; t < obs.length; ++t)
        {
            int[][] newpath = new int[states.length][obs.length];
            for (int y : states)
            {
                double prob = -1;
                int state;
                for (int y0 : states)
                {
                    double nprob = V[t - 1][y0] * trans_p[y0][y] * emit_p[y][obs[t]];
                    if (nprob > prob)
                    {
                        prob = nprob;
                        state = y0;
                        // 记录最大概率
                        V[t][y] = prob;
                        // 记录路径
                        System.arraycopy(path[state], 0, newpath[y], 0, t);
                        newpath[y][t] = y;
                    }
                }
            }
            path = newpath;
        }
        double prob = -1;
        int state = 0;
        for (int y : states)
        {
            if (V[obs.length - 1][y] > prob)
            {
                prob = V[obs.length - 1][y];
                state = y;
            }
        }
        return path[state];
    }
}

DoctorExample

package com.vipsoft.viterbi;
import static com.vipsoft.viterbi.DoctorExample.Feel.cold;
import static com.vipsoft.viterbi.DoctorExample.Feel.dizzy;
import static com.vipsoft.viterbi.DoctorExample.Feel.normal;
import static com.vipsoft.viterbi.DoctorExample.Status.Fever;
import static com.vipsoft.viterbi.DoctorExample.Status.Healthy;
public class DoctorExample
{
    enum Status
    {
        /**
         * 健康
         */
        Healthy,
        /**
         * 发热
         */
        Fever,
    }
    enum Feel
    {
        /**
         *  正常
         */
        normal,
        /**
         * 冷
         */
        cold,
        /**
         * 头晕
         */
        dizzy,
    }
    static int[] states = new int[]{Healthy.ordinal(), Fever.ordinal()};
    /**
     * 初始概率矩阵
     * { 健康:0.6 , 发烧: 0.4 }
     */
    static double[] start_probability = new double[]{0.6, 0.4};
    /**
     * 转移概率矩阵
     * {
     *  健康->健康:0.7 ,
     *  健康->发烧:0.3 ,
     *  发烧->健康:0.4 ,
     *  发烧->发烧:0.6
     * }
     */
    static double[][] transititon_probability = new double[][]{
            {0.7, 0.3},
            {0.4, 0.6},
    };
    /**
     * 发射概率矩阵
     * {
     *   健康,正常:0.5 ,冷 :0.4 ,头晕: 0.1 ;
     *   发烧,正常:0.1 ,冷 :0.3 ,头晕: 0.6
     * }
     */
    static double[][] emission_probability = new double[][]{
            {0.5, 0.4, 0.1},
            {0.1, 0.3, 0.6},
    };
    public static void main(String[] args)
    {
        // 连续三天的身体感觉依次是: 正常、冷、头晕,推算出这三天的身体状态
        int[] observations = new int[]{normal.ordinal(), cold.ordinal(), dizzy.ordinal()};
        int[] result = Viterbi.compute(observations, states, start_probability, transititon_probability, emission_probability);
        for (int r : result)
        {
            System.out.print(Status.values()[r] + " ");
        }
        System.out.println();
    }
}


目录
相关文章
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
92 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
54 3
|
10天前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
10天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
85 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
89 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
青否数字人声音克隆算法升级,16个超真实直播声音模型免费送!
青否数字人的声音克隆算法全面升级,能够完美克隆真人的音调、语速、情感和呼吸。提供16种超真实的直播声音模型,支持3大AI直播类型和6大核心AIGC技术,60秒快速开播,助力商家轻松赚钱。AI讲品、互动和售卖功能强大,支持多平台直播,确保每场直播话术不重复,智能互动和真实感十足。新手小白也能轻松上手,有效规避违规风险。
|
1月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
85 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 算法 搜索推荐
django调用矩阵分解推荐算法模型做推荐系统
django调用矩阵分解推荐算法模型做推荐系统
43 4
下一篇
DataWorks