LangChain 构建问题之Gorilla处理带有约束条件的API调用如何解决

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: LangChain 构建问题之Gorilla处理带有约束条件的API调用如何解决

问题一:智能体的发展方向有啥?


智能体的发展方向有啥?


参考回答:

智能体(AI Agent)的发展可谓是人工智能领域的一个重要里程碑。大语言模型不再局限于处理文本信息,它们的能力正在扩展到与世界各种软件工具的直接交互中。通过调用 APIs,这些模型现在可以获取信息、执行分析、生成报告、发送通知,甚至访问网络,访问数据库,使其功能变得无比强大。这种变化,让这些模型从单纯的文本处理者转变为真正的数字助理,能够理解用户的需求,并使用正确的工具为用户提供服务。

随着技术的发展,大语言模型使用工具能力与日俱增。早期的模型可能需要明确的、结构化的指令才能正确调用几十个工具,而现在,部分模型可以根据目标自由的调用上万个工具,并采取相应的行动。想象一下,仅通过简单的对话,你的智能代理就能为你预订餐厅、安排行程、购物,甚至编程。这种灵活性和智能度的提升,极大地增强了用户的体验。

另一个领域的进步是智能体正在从单一的智能代理到多代理系统的转变。初期,一个代理只能单一地执行任务,而现在,多个代理能够同时工作,协同完成更加复杂的任务。例如,一个代理可以负责数据收集,而另一个代理同时进行数据分析,第三个代理则负责与用户沟通结果。这些代理之间的协同工作像是一个高效的团队,每个成员都在其擅长的领域发挥作用。

同时,智能代理与人类用户之间交互也在往更自然化的方向发展,多代理系统工作过程中,可以引入人类的决策。这种人机交互的深度,使得智能代理不仅是工具的操作者,更是人类的合作者。

正是这些技术进步,塑造了我们今天所见证的智能体技术景观,大语言模型在工具使用能力上的显著提升以及智能代理的发展,为未来的可能性打下了坚实的基础。全球范围内,新兴的智能体技术如 OpenAI 的 WebGPT 为模型赋予了利用网页信息的能力,Adept 培养的 ACT-1 能独立于网站操作并使用 Excel、Salesforce 等软件,谷歌的 PaLM 项目旗下的 SayCan 和 PaLM-E 尝试将 LLM 与机器人相结合,Meta 的 Toolformer 探索使 LLM 能够自主调用 API,而普林斯顿的 Shunyu Yao 所做的 ReAct 工作则结合了思维链 prompting 技术和“手臂”概念,使 LLM 能够搜索并利用维基百科信息。随着这些技术的不断完善和创新,我们有望完成更多曾经难以想象的任务,开启智能体技术的崭新篇章。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/658740



问题二:智能体的分类有啥?


智能体的分类有啥?


参考回答:


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/658741



问题三:智能代理和工具之间的关系可以如何类比?


智能代理和工具之间的关系可以如何类比?


参考回答:

智能代理和工具之间的关系可以类比为人类使用工具来完成任务的方式。就像人类使用锤子敲打钉子一样,代理可以调用一个API来获取数据、使用翻译服务来翻译文本,或者执行其他功能以协助或完成它们的任务。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/658743



问题四:Gorilla模型的主要特点是什么?


Gorilla模型的主要特点是什么?


参考回答:

Gorilla模型的主要特点是它能够精准地调用超过1600个API,并且这个数量还在增长。Gorilla通过分析自然语言查询,找出并调用合适、语义语法均正确的API,从而提升了大型语言模型执行任务的能力和准确性。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/658742


问题五:Gorilla如何处理带有约束条件的API调用?


Gorilla如何处理带有约束条件的API调用?


参考回答:

Gorilla能够处理带有约束条件的API调用。除了理解API的基本功能外,Gorilla还必须能够识别和考虑各种参数约束。这一能力让Gorilla在处理特定要求的任务时显得更加智能和可靠。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/658744

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
18天前
|
JSON 数据可视化 NoSQL
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
本文介绍了LangChain的LLM Graph Transformer框架,探讨了文本到图谱转换的双模式实现机制。基于工具的模式利用结构化输出和函数调用,简化了提示工程并支持属性提取;基于提示的模式则为不支持工具调用的模型提供了备选方案。通过精确定义图谱模式(包括节点类型、关系类型及其约束),显著提升了提取结果的一致性和可靠性。LLM Graph Transformer为非结构化数据的结构化表示提供了可靠的技术方案,支持RAG应用和复杂查询处理。
62 2
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
|
9天前
|
SQL 缓存 测试技术
构建高性能RESTful API:最佳实践与避坑指南###
—— 本文深入探讨了构建高性能RESTful API的关键技术要点,从设计原则、状态码使用、版本控制到安全性考虑,旨在为开发者提供一套全面的最佳实践框架。通过避免常见的设计陷阱,本文将指导你如何优化API性能,提升用户体验,确保系统的稳定性和可扩展性。 ###
46 12
|
9天前
|
存储 SQL API
探索后端开发:构建高效API与数据库交互
【10月更文挑战第36天】在数字化时代,后端开发是连接用户界面和数据存储的桥梁。本文深入探讨如何设计高效的API以及如何实现API与数据库之间的无缝交互,确保数据的一致性和高性能。我们将从基础概念出发,逐步深入到实战技巧,为读者提供一个清晰的后端开发路线图。
|
6天前
|
JSON JavaScript API
深入浅出Node.js:从零开始构建RESTful API
【10月更文挑战第39天】 在数字化时代的浪潮中,API(应用程序编程接口)已成为连接不同软件应用的桥梁。本文将带领读者从零基础出发,逐步深入Node.js的世界,最终实现一个功能完备的RESTful API。通过实践,我们将探索如何利用Node.js的异步特性和强大的生态系统来构建高效、可扩展的服务。准备好迎接代码和概念的碰撞,一起解锁后端开发的新篇章。
|
8天前
|
存储 前端开发 搜索推荐
淘宝 1688 API 接口助力构建高效淘宝代购集运系统
在全球化商业背景下,淘宝代购集运业务蓬勃发展,满足了海外消费者对中国商品的需求。掌握淘宝1688 API接口是构建成功代购系统的關鍵。本文详细介绍如何利用API接口进行系统架构设计、商品数据同步、订单处理与物流集成,以及用户管理和客户服务,帮助你打造一个高效便捷的代购集运系统,实现商业价值与用户满意度的双赢。
|
10天前
|
JSON 缓存 API
构建高效RESTful API的最佳实践
【10月更文挑战第34天】在数字时代的浪潮中,后端开发扮演着至关重要的角色。本文将带你深入探索如何构建高效的RESTful API,从设计原则到实际编码技巧,再到性能优化和错误处理,我们将一一解锁这些技能。你将学会如何打造一个既优雅又强大的后端服务,让你的应用程序在激烈的市场竞争中脱颖而出。那么,让我们一起踏上这段精彩的旅程吧!
26 2
|
19天前
|
前端开发 关系型数据库 API
深入浅出后端开发——从零到一构建RESTful API
本文旨在为初学者提供一个关于后端开发的全面指南,特别是如何从零开始构建一个RESTful API。我们将探讨后端开发的基本概念、所需技术栈、以及通过实际案例展示如何设计和实现一个简单的RESTful API。无论你是完全的新手还是有一定编程基础的开发者,这篇文章都将为你提供实用的知识和技巧,帮助你在后端开发的道路上迈出坚实的一步。
|
20天前
|
前端开发 JavaScript API
探索GraphQL:如何构建高效的数据API
【10月更文挑战第25天】在现代Web开发中,API的效率和灵活性至关重要。本文探讨了如何利用GraphQL构建高效的数据API。GraphQL通过声明式查询方式,允许客户端精确指定所需数据,减少数据传输量,提高API效率。文章介绍了设置GraphQL服务器、设计API Schema、实现解析函数及调整前后端交互的具体步骤,展示了GraphQL的优势和应用场景。
31 2
|
20天前
|
JSON API 数据格式
如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架
本文介绍了如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架,适合小型项目和微服务。文章从环境准备、创建基本Flask应用、定义资源和路由、请求和响应处理、错误处理等方面进行了详细说明,并提供了示例代码。通过这些步骤,读者可以快速上手构建自己的RESTful API。
25 2
|
10天前
|
JavaScript 前端开发 NoSQL
深入浅出:使用Node.js构建RESTful API
【10月更文挑战第35天】在数字时代的浪潮中,后端技术如同海洋中稳固的灯塔,为前端应用提供数据和逻辑支撑。本文旨在通过浅显易懂的方式,带领读者了解如何利用Node.js这一强大的后端平台,搭建一个高效、可靠的RESTful API。我们将从基础概念入手,逐步深入到代码实践,最终实现一个简单的API示例。这不仅是对技术的探索,也是对知识传递方式的一次创新尝试。让我们一起启航,探索Node.js的奥秘,解锁后端开发的无限可能。