预训练模型STAR问题之生成重放灾难性遗忘的问题如何解决

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: 预训练模型STAR问题之生成重放灾难性遗忘的问题如何解决

问题一:为什么构建具有终身学习能力的对话系统很重要?

为什么构建具有终身学习能力的对话系统很重要?


参考回答:

构建具有终身学习能力的对话系统很重要,因为实际应用中部署的对话系统需要支持新功能并提供更多服务。重新训练整个系统会消耗过多时间和计算资源,而终身学习模型能够保留旧知识的同时学习新知识。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655774


问题二:灾难性遗忘是什么,为什么它会在终身学习中出现?

灾难性遗忘是什么,为什么它会在终身学习中出现?


参考回答:

灾难性遗忘是指模型在序列化地学习具有不同数据分布的多个任务时,无法维持旧任务的性能,即遗忘了旧任务学到的知识。这是因为在学习新任务时,模型参数会被更新,导致旧任务的性能下降。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655775


问题三:生成重放方法是如何解决灾难性遗忘问题的?

生成重放方法是如何解决灾难性遗忘问题的?


参考回答:

生成重放方法通过生成旧任务的伪样本来近似旧任务的数据分布,并将生成的伪样本与新任务样本混合训练,以维持对旧任务的记忆,从而避免灾难性遗忘。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655776


问题四:Prompt Conditioned VAE是如何增强生成重放方法的?

Prompt Conditioned VAE是如何增强生成重放方法的?


参考回答:

Prompt Conditioned VAE通过结合不同任务的统计信息来增强生成重放方法。它使用条件变分自动编码器捕获任务特定的分布,并以自然语言提示为条件指导伪样本生成。此外,它还利用知识蒸馏来减轻伪样本中的噪声,进一步巩固过去的知识。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655777


问题五:现有的自然语言领域的终身学习方法主要关注哪种学习环境?

现有的自然语言领域的终身学习方法主要关注哪种学习环境?


参考回答:

现有的自然语言领域的终身学习方法主要关注有监督的学习环境。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655778

相关文章
|
5月前
|
机器学习/深度学习 算法
【机器学习】过拟合和欠拟合怎么判断,如何解决?(面试回答)
本文介绍了如何通过观察训练误差和验证误差来判断模型是否出现过拟合或欠拟合,并提供了相应的解决方案,包括增加数据、调整模型复杂度、使用正则化技术等。
525 1
|
2月前
|
机器学习/深度学习 自然语言处理
完全使用自生成数据实现LLM自我纠正,DeepMind新突破SCoRe:纠正性能提升15.9%
【10月更文挑战第27天】Google DeepMind 研究人员开发了 SCoRe 方法,利用多回合在线强化学习显著提升大型语言模型(LLM)的自我纠正能力。该方法分为两个阶段:第一阶段通过强化学习减少行为崩溃,第二阶段使用奖励塑造优化两次尝试的性能。实验结果显示,SCoRe 在数学和编程任务上分别提升了 4.4% 和 12.2% 的自我纠正性能。
58 3
|
3月前
|
机器学习/深度学习 存储 监控
揭秘微调‘失忆’之谜:如何运用低秩适应与多任务学习等策略,快速破解灾难性遗忘难题?
【10月更文挑战第13天】本文介绍了几种有效解决微调灾难性遗忘问题的方法,包括低秩适应(LoRA)、持续学习和增量学习策略、记忆增强方法、多任务学习框架、正则化技术和适时停止训练。通过示例代码和具体策略,帮助读者优化微调过程,提高模型的稳定性和效能。
113 5
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
彻底告别微调噩梦:手把手教你击退灾难性遗忘,让模型记忆永不褪色的秘密武器!
【10月更文挑战第5天】深度学习中,模型微调虽能提升性能,但也常导致灾难性遗忘,即学习新任务时遗忘旧知识。本文介绍几种有效解决方案,重点讲解弹性权重巩固(EWC)方法,通过在损失函数中添加正则项来防止重要权重被更新,保护模型记忆。文中提供了基于PyTorch的代码示例,包括构建神经网络、计算Fisher信息矩阵和带EWC正则化的训练过程。此外,还介绍了其他缓解灾难性遗忘的方法,如LwF、在线记忆回放及多任务学习,以适应不同应用场景。
300 8
|
5月前
预训练模型STAR问题之缓解灾难性遗忘的问题如何解决
预训练模型STAR问题之缓解灾难性遗忘的问题如何解决
|
5月前
|
机器学习/深度学习
|
机器学习/深度学习 人工智能 自然语言处理
大模型的幻觉现象介绍
本文转载至赛尔实验室 ,作者哈工大SCIR,这篇文章很好的解释了大模型的幻觉问题,并且给出了一系列理论上能验证大模型幻觉现象的方式,是一篇很好的科普文章,针对于验证方式后期也可以采取对应的方式来优化此类幻觉现象,先码住好好学习一下哇嘎嘎嘎
|
8月前
|
机器学习/深度学习 数据采集 算法
|
机器学习/深度学习 存储 人工智能
Attention机制竟有bug,Softmax是罪魁祸首,影响所有Transformer
Attention机制竟有bug,Softmax是罪魁祸首,影响所有Transformer
135 0
Attention机制竟有bug,Softmax是罪魁祸首,影响所有Transformer
|
人工智能 自然语言处理 算法
ChatGPT模型中的惩罚机制
ChatGPT中,除了采样,还有惩罚机制也能控制文本生成的多样性和创意性。本文将详细为大家讲解ChatGPT种的两种惩罚机制,以及对应的`frequency_penalty `和`presence_penalty `参数。
1045 0

热门文章

最新文章