预训练模型STAR问题之缓解灾难性遗忘的问题如何解决

简介: 预训练模型STAR问题之缓解灾难性遗忘的问题如何解决

问题一:为什么半监督终身语言学习是重要的?

为什么半监督终身语言学习是重要的?


参考回答:

在现实世界的场景中,有标数据通常是昂贵且耗时的,而无标数据数量众多且容易收集,并携带着丰富的语义信息。因此,半监督终身语言学习能够利用这些无标数据来提升模型的性能,具有重要的实际应用价值。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655779


问题二:Semi-Supervised Lifelong Language Learning 中提出了什么设定来应对有标数据稀缺的问题?

Semi-Supervised Lifelong Language Learning 中提出了什么设定来应对有标数据稀缺的问题?


参考回答:

Semi-Supervised Lifelong Language Learning 提出了一种新的设定,即半监督终身语言学习,其中每个顺序到达的语言任务都带有少量的标记数据和大量的无标数据。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655780


问题三:如何缓解灾难性遗忘的问题?

如何缓解灾难性遗忘的问题?


参考回答:

为了缓解灾难性遗忘的问题,Semi-Supervised Lifelong Language Learning 为每个任务分配特定的参数,以避免模型学习新任务时对旧任务所学过的参数造成干扰。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655781


问题四:Semi-Supervised Lifelong Language Learning 中提到的两个挑战是什么?

Semi-Supervised Lifelong Language Learning 中提到的两个挑战是什么?


参考回答:

Semi-Supervised Lifelong Language Learning 中提到的两个挑战是:(1) 如何充分利用无标数据来提升每个到来的语言任务?(2) 如何利用无标数据来鼓励知识迁移到以前学习过的任务?


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655782


问题五:dial2vec的主要目标是什么?

dial2vec的主要目标是什么?


参考回答:

dial2vec的主要目标是将一段完整的对话映射为一个高维度的语义向量,这对于对话级的语义理解至关重要。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655783

相关文章
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
揭秘深度学习中的微调难题:如何运用弹性权重巩固(EWC)策略巧妙应对灾难性遗忘,附带实战代码详解助你轻松掌握技巧
【10月更文挑战第1天】深度学习中,模型微调虽能提升性能,但常导致“灾难性遗忘”,即模型在新任务上训练后遗忘旧知识。本文介绍弹性权重巩固(EWC)方法,通过在损失函数中加入正则项来惩罚对重要参数的更改,从而缓解此问题。提供了一个基于PyTorch的实现示例,展示如何在训练过程中引入EWC损失,适用于终身学习和在线学习等场景。
170 4
揭秘深度学习中的微调难题:如何运用弹性权重巩固(EWC)策略巧妙应对灾难性遗忘,附带实战代码详解助你轻松掌握技巧
|
3月前
|
机器学习/深度学习 存储 监控
揭秘微调‘失忆’之谜:如何运用低秩适应与多任务学习等策略,快速破解灾难性遗忘难题?
【10月更文挑战第13天】本文介绍了几种有效解决微调灾难性遗忘问题的方法,包括低秩适应(LoRA)、持续学习和增量学习策略、记忆增强方法、多任务学习框架、正则化技术和适时停止训练。通过示例代码和具体策略,帮助读者优化微调过程,提高模型的稳定性和效能。
113 5
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
彻底告别微调噩梦:手把手教你击退灾难性遗忘,让模型记忆永不褪色的秘密武器!
【10月更文挑战第5天】深度学习中,模型微调虽能提升性能,但也常导致灾难性遗忘,即学习新任务时遗忘旧知识。本文介绍几种有效解决方案,重点讲解弹性权重巩固(EWC)方法,通过在损失函数中添加正则项来防止重要权重被更新,保护模型记忆。文中提供了基于PyTorch的代码示例,包括构建神经网络、计算Fisher信息矩阵和带EWC正则化的训练过程。此外,还介绍了其他缓解灾难性遗忘的方法,如LwF、在线记忆回放及多任务学习,以适应不同应用场景。
300 8
|
5月前
|
机器学习/深度学习
|
5月前
|
自然语言处理
预训练模型STAR问题之生成重放灾难性遗忘的问题如何解决
预训练模型STAR问题之生成重放灾难性遗忘的问题如何解决
|
机器学习/深度学习 人工智能 自然语言处理
大模型的幻觉现象介绍
本文转载至赛尔实验室 ,作者哈工大SCIR,这篇文章很好的解释了大模型的幻觉问题,并且给出了一系列理论上能验证大模型幻觉现象的方式,是一篇很好的科普文章,针对于验证方式后期也可以采取对应的方式来优化此类幻觉现象,先码住好好学习一下哇嘎嘎嘎
|
8月前
|
机器学习/深度学习 数据采集 算法
|
8月前
|
人工智能 算法 网络架构
谷歌新论文:潜在扩散模型并非越大越好
【4月更文挑战第9天】谷歌研究团队发现,潜在扩散模型(LDMs)的性能并非完全由其大小决定。通过对比不同规模的LDMs,他们在有限推理预算下发现小模型能生成与大模型相当甚至更好的结果。研究强调了在采样效率和模型规模间的平衡,为优化生成模型在有限资源下的效能提供了新思路。然而,小模型的建模能力限制和对特定模型系列的适用性仍需进一步研究。
53 1
谷歌新论文:潜在扩散模型并非越大越好
|
计算机视觉
SplitMask:大规模数据集是自我监督预训练的必要条件吗?
自监督预训练需要大规模数据集吗?这是2021年发布的一篇论文,它在自监督预训练场景中使用小数据集,如Stanford Cars, Sketch或COCO,它们比ImageNet小几个数量级。并提出了一种类似于BEiT的去噪自编码器的变体SplitMask,它对预训练数据的类型和大小具有更强的鲁棒性。
84 0
|
8月前
|
机器学习/深度学习 自然语言处理 算法
【大模型】关于减轻 LLM 训练数据和算法中偏差的研究
【5月更文挑战第6天】【大模型】关于减轻 LLM 训练数据和算法中偏差的研究

热门文章

最新文章