模型部署 — PaddleNLP 基于 Paddle Serving 快速使用(服务化部署 - Docker)— 图像识别 + 信息抽取(UIE-X)

简介: 模型部署 — PaddleNLP 基于 Paddle Serving 快速使用(服务化部署 - Docker)— 图像识别 + 信息抽取(UIE-X)

目录


图像识别 + 信息抽取(UIE-X),部署接口供别的应用调用

最终在自己部署的环境中识别时报错,不知道是不是和GPU有关,还在尝试中

流程

  • 在百度 BML CodeLab 中跑好模型(免费算力,玩玩够了)
  • 下载模型 (比较大,我这个有10G了,可以适当做裁剪)
  • Linux 上安装 Docker ,所以的事项在 Docker 中运行

版本

虚机配置:CentOS 7 、 内存:12G、CPU:4核

本文版本号:

Python 3.7.13 Docker 镜像已经集成

PaddlePaddle 2.4.0 Docker 镜像已经集成

PaddleNLP 2.5.2

PaddleOcr 2.6.1.3

注意: Python 版本 (Docker 镜像中的 Python 已经集成好)

PaddlePaddle 2.4.0 - => Python 3.7.4

PaddlePaddle 2.4.1 + => Python 3.9.0

查看版本 注意各个应用的版本关系

https://hub.docker.com/r/paddlepaddle/paddle/tags/?page=1&name=cpu

安装

虚机配置:CentOS 7 、 内存:12G、CPU:4核

镜像中集成好了 Python 3.7.12 比较方便

Docker 安装

# 切换进 opt/ppnlp 目录,后面 $PWD 挂载时会用到当前的路径
[root@localhost ~]# cd /opt/ppnlp/
[root@localhost ppnlp]# pwd
/opt/ppocr
[root@localhost ppnlp]# 
# 获取镜像 -- 没有GPU环境,使用CPU跑了玩玩
[root@localhost ppnlp]# docker pull registry.baidubce.com/paddlepaddle/paddle:2.4.0-cpu
# 创建一个名字为 ppnlp 的docker容器,并将当前目录映射到容器的/paddle目录下
[root@localhost ppnlp]# docker run --name ppnlp -v $PWD:/paddle --network=host -it registry.baidubce.com/paddlepaddle/paddle:2.4.0-cpu /bin/bash
# --name ppnlp:设定 Docker 的名称,ppnlp 是自己设置的名称;
# -it:参数说明容器已和本机交互式运行;
# -v $PWD:/paddle:指定将当前路径(PWD 变量会展开为当前路径的绝对路径--Linux宿主机的路径,所以执行命令的路径要选好)挂载到容器内部的 /paddle 目录;(相当于 /opt/ppnlp 挂载到容器内)
# registry.baidubce.com/paddlepaddle/paddle:2.4.0-cpu:指定需要使用的 image 名称,您可以通过docker images命令查看;/bin/bash 是在 Docker 中要执行的命令
# ctrl+P+Q可退出docker 容器,重新进入docker 容器使用如下命令
[root@localhost ppocr]# docker exec -it ppnlp /bin/bash
λ localhost /home

[root@localhost 开头的都是在Linux 服务器上执行

以下命令都是在容器中执行,防止混淆,下面命令省掉了 λ localhost /home

PaddleNLP 安装

# 升级 pip 
pip install -U pip -i https://mirror.baidu.com/pypi/simple
# 容器中已经包含了 paddlepaddle 2.4.0
pip list
# 安装 PaddleNLP
pip install paddlenlp -i https://mirror.baidu.com/pypi/simple
# 安装 PaddleOCR
pip install paddleocr -i https://mirror.baidu.com/pypi/simple

环境准备

模型准备

前面已经训练好了:https://aistudio.baidu.com/aistudio/projectdetail/6518069?sUid=2631487&shared=1&ts=1689903307978

压缩模型

# 压缩文件 --大概要10G左右
tar cf checkpoint.tar checkpoint

下载模型

文件有点大,10G左右

模型部署

[root@localhost ~]# cd /opt/ppnlp
# 将模型,复制到容器中
[root@localhost ppnlp]# docker cp checkpoint.tar ppnlp:/home
# 进入容器
[root@localhost ppnlp]# docker exec -it ppnlp /bin/bash
λ localhost /home ll
total 9.5G
drwxr-xr-x. 1 root root   55 Jul 21 02:58  ./
drwxr-xr-x. 1 root root   66 Jul 21 02:58  ../
-rw-r--r--. 1 root root 9.5G Jul 21 02:24  checkpoint.tar
drwxr-xr-x. 6 root root   52 Aug 17  2022  cmake-3.16.0-Linux-x86_64/
λ localhost /home
λ localhost /home tar -xvf checkpoint.tar
# 容器中安装 tree
λ localhost /home apt-get install tree

环境配置

https://gitee.com/paddlepaddle/PaddleNLP/tree/v2.5.2/applications/information_extraction/document/deploy/simple_serving

将 server.py、client.py、test.jpg 根据环境修改配置后,上传至容器中

test.jpg

server.py

from paddlenlp import SimpleServer, Taskflow
# The schema changed to your defined schema
schema = ["开票日期", "名称", "纳税人识别号", "开户行及账号", "金额", "价税合计", "No", "税率", "地址、电话", "税额"]
# The task path changed to your best model path
uie = Taskflow(
    "information_extraction",
    schema=schema,
    task_path="/home/checkpoint/model_best", # 注意路径
)
# If you want to define the finetuned uie service
app = SimpleServer()
app.register_taskflow("taskflow/uie", uie)

client.py

import json
import requests
from paddlenlp.utils.doc_parser import DocParser
# Define the docuemnt parser
doc_parser = DocParser()
image_paths = ["/home/test.jpg"] # 注意路径
image_base64_docs = []
# Get the image base64 to post
for image_path in image_paths:
    req_dict = {}
    doc = doc_parser.parse({"doc": image_path}, do_ocr=False)
    base64 = doc["image"]
    req_dict["doc"] = base64
    image_base64_docs.append(req_dict)
url = "http://0.0.0.0:8189/taskflow/uie"
headers = {"Content-Type": "application/json"}
data = {"data": {"text": image_base64_docs}}
# Post the requests
r = requests.post(url=url, headers=headers, data=json.dumps(data))
datas = json.loads(r.text)
print(datas)

将文件传到容器内

# 将文件传至容器
[root@localhost ppnlp]# docker cp client.py ppnlp:/home
[root@localhost ppnlp]# docker cp server.py ppnlp:/home
[root@localhost ppnlp]# docker cp test.jpg ppnlp:/home
# 进入容器
[root@localhost ppnlp]# docker exec -it ppnlp /bin/bash
λ localhost /home ll
total 9.5G
-rw-r--r--. 1 root root   77 Jul 20 09:27 '='
drwxr-xr-x. 1 root root  105 Jul 21 05:24  ./
drwxr-xr-x. 1 root root   66 Jul 21 05:24  ../
drwxr-xr-x. 3 1000 1000   24 Jul 18 09:36  checkpoint/
-rw-r--r--. 1 root root 9.5G Jul 21 02:24  checkpoint.tar
-rw-r--r--. 1 root root 1.3K Jul 21 04:02  client.py
drwxr-xr-x. 6 root root   52 Aug 17  2022  cmake-3.16.0-Linux-x86_64/
-rw-r--r--. 1 root root 1.2K Jul 21 03:57  server.py
-rw-r--r--. 1 root root 1.4M Jul 21 03:55  test.jpg
λ localhost /home

启动服务

# 进入容器
[root@localhost ppnlp]# docker exec -it ppnlp /bin/bash
# 启动服务
λ localhost /home paddlenlp server server:app --workers 1 --host 0.0.0.0 --port 8189
# 后台运行 -- 测试时不要用后台运行,中间会报很多错误,开两个窗口,调试时方便
# λ localhost /home nohup paddlenlp server server:app --workers 1 --host 0.0.0.0 --port 8189 &>log.txt &

测试 -- 暂时还没通过

# 再开一个窗口执行
# 进入容器
[root@localhost ppnlp]# docker exec -it ppnlp /bin/bash
λ localhost /home python client.py

百度的环境重现了,问题就是我的服务器没有GPU

from pprint import pprint
from paddlenlp import Taskflow
schema = {
    '项目名称': [
        '结果',
        '单位',
        '参考范围'
    ]
}
my_ie = Taskflow("information_extraction", model="uie-x-base", schema=schema, task_path='./checkpoint/model_best')
# 加上device_id=0,使用CPU,会就报
my_ie = Taskflow("information_extraction", model="uie-x-base", schema=schema, device_id=0, task_path='./checkpoint/model_best')

百度 BML CodeLab 环境中,加上device_id=0, 使用CPU,会就报下面错误 推测我的虚机里面错误,应该是没有GPU环境有关

重启

# 如果容器停止,重启容器
[root@localhost ppocr]# docker restart ppnlp
# 进入容器
[root@localhost ppocr]# docker exec -it ppnlp /bin/bash
# 启动服务
λ localhost /home paddlenlp server server:app --workers 1 --host 0.0.0.0 --port 8189
# 后台运行 -- 测试时不要用后台运行,中间会报很多错误,开两个窗口,调试时方便
# λ localhost /home nohup paddlenlp server server:app --workers 1 --host 0.0.0.0 --port 8189 &>log.txt &
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
9天前
|
Kubernetes Java Docker
利用(K8S)配合Docker部署jar包
通过Docker打包并部署到Kubernetes(K8S)集群的过程。首先,通过SpringBoot生成jar包,接着在K8S环境中创建并编辑Dockerfile文件。随后构建Docker镜像,并将其推送到镜像仓库。最后,通过一系列kubectl命令(如get pods、get svc、logs等),展示了如何在K8S中管理应用,包括查看Pod状态、服务信息、Pod日志以及重启Pod等操作。
53 2
|
12天前
|
NoSQL 关系型数据库 MySQL
docker部署jumpserver及入门
docker部署jumpserver及入门
|
15天前
|
Kubernetes Devops 持续交付
DevOps实践:使用Docker和Kubernetes实现持续集成和部署网络安全的守护盾:加密技术与安全意识的重要性
【8月更文挑战第27天】本文将引导读者理解并应用DevOps的核心理念,通过Docker和Kubernetes的实战案例,深入探讨如何在现代软件开发中实现自动化的持续集成和部署。文章不仅提供理论知识,还结合真实示例,旨在帮助开发者提升效率,优化工作流程。
|
8天前
|
Docker 容器
Docker自建仓库之Harbor高可用部署实战篇
关于如何部署Harbor高可用性的实战教程,涵盖了从单机部署到镜像仓库同步的详细步骤。
39 15
Docker自建仓库之Harbor高可用部署实战篇
|
8天前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
|
7天前
|
虚拟化 Docker Windows
window 10专业版部署docker环境
本文介绍了如何在Windows 10专业版上部署Docker环境,包括安装步骤、配置镜像加速以及可能遇到的错误处理。
22 2
window 10专业版部署docker环境
|
8天前
|
存储 关系型数据库 MySQL
使用Docker快速部署Mysql服务器
本文介绍了如何使用Docker快速部署MySQL服务器,包括下载官方MySQL镜像、启动容器、设置密码、连接MySQL服务器以及注意事项。
69 18
|
8天前
|
存储 测试技术 数据安全/隐私保护
Docker自建仓库之Harbor部署实战
关于如何部署和使用Harbor作为Docker企业级私有镜像仓库的详细教程。
30 12
|
8天前
|
运维 数据安全/隐私保护 Docker
Docker自建仓库之Docker Registry部署实战
关于如何使用Docker Registry镜像搭建本地私有Docker仓库的实战教程,包括了下载镜像、创建授权目录和用户名密码、启动Registry容器、验证端口和容器、测试登录仓库、上传和下载镜像的详细步骤。
41 5
|
12天前
|
物联网 Serverless API
函数计算产品使用问题之怎么部署Docker镜像进行lora训练
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
下一篇
DDNS