模型遇见知识图谱问题之参与阿里云机器学习团队的开源社区的问题如何解决

简介: 模型遇见知识图谱问题之参与阿里云机器学习团队的开源社区的问题如何解决

问题一:阿里云机器学习团队在Transformer模型方面有什么新的进展?

阿里云机器学习团队在Transformer模型方面有什么新的进展?


参考回答:

阿里云机器学习团队在EasyNLP框架中扩展了基于Transformer的中文文图生成功能,同时开放了模型的Checkpoint。这使得开源社区的用户在资源有限的情况下,也能进行少量领域相关的微调,并进行各种艺术创作。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655957


问题二:如何参与阿里云机器学习团队的开源社区?

如何参与阿里云机器学习团队的开源社区?


参考回答:

用户可以通过访问阿里云机器学习团队的Github仓库(https://github.com/alibaba/EasyNLP)来参与开源社区。在这里,用户可以共建中文NLP和多模态算法库,为中文NLP和多模态技术的发展做出贡献。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655958


问题三:什么是Java本地缓存技术,并简述其重要性?

什么是Java本地缓存技术,并简述其重要性?


参考回答:

Java本地缓存技术是一种在JVM内部存储数据以加速数据访问的技术。它通过将数据存储在内存中,避免了频繁访问数据库或外部存储系统,从而提高了应用的响应速度和性能。本地缓存对于处理大量数据读取操作的应用尤其重要,因为它可以显著减少I/O等待时间。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655648


问题四:HashMap在Java本地缓存技术中如何使用,有哪些优缺点?

HashMap在Java本地缓存技术中如何使用,有哪些优缺点?


参考回答:

HashMap在Java本地缓存技术中可以通过其Map的底层方式直接将需要缓存的对象放在内存中。优点是简单直接,不需要引入第三方包,适用于简单的缓存场景。缺点是HashMap没有内置的缓存淘汰策略,定制化开发成本较高。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655649


问题五:如何使用LinkedHashMap实现一个简单的LRU(最近最少使用)缓存?

如何使用LinkedHashMap实现一个简单的LRU(最近最少使用)缓存?


参考回答:

可以通过继承LinkedHashMap并实现其removeEldestEntry方法来实现一个简单的LRU缓存。示例代码如下:

public class LRUCache extends LinkedHashMap<Object, Object> { 
private int maxSize; 

public LRUCache(int maxSize) { 
super(maxSize + 1, 1.0f, true); // 第三个参数设为true,使LinkedHashMap按访问顺序排序 
this.maxSize = maxSize; 
} 

@Override 
protected boolean removeEldestEntry(Map.Entry<Object, Object> eldest) { 
return size() > maxSize; // 当Map中的数据量大于指定的缓存个数时,就自动删除最老的数据 
} 
}


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655650

相关文章
|
23天前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
53 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
23天前
|
人工智能 自然语言处理 安全
通过阿里云Milvus与PAI搭建高效的检索增强对话系统
阿里云向量检索Milvus版是一款全托管的云服务,兼容开源Milvus并支持无缝迁移。它提供大规模AI向量数据的相似性检索服务,具备易用性、可用性、安全性和低成本等优势,适用于多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等场景。用户可通过PAI平台部署RAG系统,创建和配置Milvus实例,并利用Attu工具进行可视化操作,快速开发和部署应用。使用前需确保Milvus实例和PAI在相同地域,并完成相关配置与开通服务。
|
26天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
146 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
15天前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
59 18
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
12天前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
36 4
|
29天前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
|
27天前
|
并行计算 PyTorch 算法框架/工具
阿里云PAI-部署Qwen2-VL-72B
阿里云PAI-部署Qwen2-VL-72B踩坑实录
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
168 4
|
16天前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
43 14