模型遇见知识图谱问题之参与阿里云机器学习团队的开源社区的问题如何解决

简介: 模型遇见知识图谱问题之参与阿里云机器学习团队的开源社区的问题如何解决

问题一:阿里云机器学习团队在Transformer模型方面有什么新的进展?

阿里云机器学习团队在Transformer模型方面有什么新的进展?


参考回答:

阿里云机器学习团队在EasyNLP框架中扩展了基于Transformer的中文文图生成功能,同时开放了模型的Checkpoint。这使得开源社区的用户在资源有限的情况下,也能进行少量领域相关的微调,并进行各种艺术创作。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655957


问题二:如何参与阿里云机器学习团队的开源社区?

如何参与阿里云机器学习团队的开源社区?


参考回答:

用户可以通过访问阿里云机器学习团队的Github仓库(https://github.com/alibaba/EasyNLP)来参与开源社区。在这里,用户可以共建中文NLP和多模态算法库,为中文NLP和多模态技术的发展做出贡献。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655958


问题三:什么是Java本地缓存技术,并简述其重要性?

什么是Java本地缓存技术,并简述其重要性?


参考回答:

Java本地缓存技术是一种在JVM内部存储数据以加速数据访问的技术。它通过将数据存储在内存中,避免了频繁访问数据库或外部存储系统,从而提高了应用的响应速度和性能。本地缓存对于处理大量数据读取操作的应用尤其重要,因为它可以显著减少I/O等待时间。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655648


问题四:HashMap在Java本地缓存技术中如何使用,有哪些优缺点?

HashMap在Java本地缓存技术中如何使用,有哪些优缺点?


参考回答:

HashMap在Java本地缓存技术中可以通过其Map的底层方式直接将需要缓存的对象放在内存中。优点是简单直接,不需要引入第三方包,适用于简单的缓存场景。缺点是HashMap没有内置的缓存淘汰策略,定制化开发成本较高。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655649


问题五:如何使用LinkedHashMap实现一个简单的LRU(最近最少使用)缓存?

如何使用LinkedHashMap实现一个简单的LRU(最近最少使用)缓存?


参考回答:

可以通过继承LinkedHashMap并实现其removeEldestEntry方法来实现一个简单的LRU缓存。示例代码如下:

public class LRUCache extends LinkedHashMap<Object, Object> { 
private int maxSize; 

public LRUCache(int maxSize) { 
super(maxSize + 1, 1.0f, true); // 第三个参数设为true,使LinkedHashMap按访问顺序排序 
this.maxSize = maxSize; 
} 

@Override 
protected boolean removeEldestEntry(Map.Entry<Object, Object> eldest) { 
return size() > maxSize; // 当Map中的数据量大于指定的缓存个数时,就自动删除最老的数据 
} 
}


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655650

相关文章
|
1月前
|
人工智能 JSON 算法
【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。
|
1月前
|
PyTorch 调度 算法框架/工具
阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析
DLC任务Pytorch launch_agent Socket Timeout问题源码分析与解决方案
93 18
阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析
|
1月前
|
数据可视化 Rust 机器学习/深度学习
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
mlop.ai 是首个为国区用户优化的机器学习工具,全栈免费开源,是主流付费解决方案 ClearML/WandB 的开源平替。常规实验追踪的工具经常大幅人为降速,mlop因为底层为Rust代码,能轻松支持高频数据写入。如需更多开发者帮助或企业支持,敬请联系cn@mlop.ai
96 12
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
阿里云人工智能平台 PAI 开源 EasyDistill 框架助力大语言模型轻松瘦身
本文介绍了阿里云人工智能平台 PAI 推出的开源工具包 EasyDistill。随着大语言模型的复杂性和规模增长,它们面临计算需求和训练成本的障碍。知识蒸馏旨在不显著降低性能的前提下,将大模型转化为更小、更高效的版本以降低训练和推理成本。EasyDistill 框架简化了知识蒸馏过程,其具备多种功能模块,包括数据合成、基础和进阶蒸馏训练。通过数据合成,丰富训练集的多样性;基础和进阶蒸馏训练则涵盖黑盒和白盒知识转移策略、强化学习及偏好优化,从而提升小模型的性能。
|
1月前
|
缓存 并行计算 测试技术
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
238 11
|
2月前
|
人工智能 自然语言处理 运维
Qwen3 全尺寸模型支持通过阿里云PAI-ModelGallery 一键部署
Qwen3 是 Qwen 系列最新一代的大语言模型,提供了一系列密集(Dense)和混合专家(MOE)模型。目前,PAI 已经支持 Qwen3 全系列模型一键部署,用户可以通过 PAI-Model Gallery 快速开箱!
|
26天前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
90 7
|
7月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
425 6
|
2月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
127 6
下一篇
oss创建bucket