【C++】类和对象(下)

简介: 【C++】类和对象(下)

初始化列表

在对类和对象有了基本的认识之后,可以知道在创建对象的时候,编译器通过调用构造函数,给对象中各个成员变量一个合适的初始值。

class Date
{
public:
  Date(int year, int month, int day)
  {
    _year = year;
    _month = month;
    _day = day;
  }
private:
  int _year;
  int _month;
  int _day;
};

上面的代码通过构造函数赋予了成员变量新的值,但不能称之为对对象中成员变量的初始化,构造函数中的语句只能称之为赋初值,而不能称作初始化。

  • 初始化只能初始化一次,而构造函数体内可以多次赋值。

初始化列表:以一个冒号开始,接着是一个以逗号分隔的数据或成员列表,每个成员变量后面跟着一个放在括号中的初始值或者表达式。

class Date
{
public:
  Date(int year, int month, int day)
  //对象的定义
    :_year(year)
    ,_month(month)
    ,_day(day)
  {}
private:
//对象的声明
  int _year;
  int _month;
  int _day;
};
int main(void)
{
  Date d(2000,1,1);//对象的整体定义
  return 0;
}

成员变量在类里面是声明,在主函数(main)中会对成员变量进行对象的整体定义,所有C++中规定了初始化列表,对象的成员定义的位置便是在初始化列表,在构造函数体内进行的是成员变量的赋值。

【注意】

1.每一个成员变量在初始化列表中最多只能出现一次(初始化只能初始化一次)

成员变量可以在初始化列表不出现,但是出现最多只能出现一次,否则就会报错。

如果成员变量在初始化列表中不出现,成员变量中的内置类型不做处理,而自定义类型会调用其默认的构造函数。

2.类中包含以下成员,必须放在初始化列表位置进行初始化。

  • 引用成员变量
class B
{
public:
  B(int& i)
    :_i(i)
  {}
private:
  int& _i;
};
int main(void)
{
  int i = 10;
  B b1(i);
  return 0;
}

当类中存在引用成员变量时,必须在定义的时候初始化。

而在传引用值时,需要预先在出函数中定义好一个变量,构造函数接收参数时使用引用,如果只是传递一个值,在调用构造函数时会建立一个临时变量存储这个值,当构造函数销毁时,临时变量也会销毁,那么此时这个引用就会变成一种野引用。

  • const成员变量
class B
{
public:
  B(int c)
    :_c(c)
  {}
private:
  const int _c;
};
int main(void)
{
  B bb1(10);
  return 0;
}

当类中存在const修饰成员变量时,必须在定义的时候初始化。

被const修饰的变量只有一次初始机会,此后不可以被修改,所有必须在初始化列表的定义。

  • 自定义类型(且该类型没有默认的构造函数)
class A
{
public:
  A(int a)
    :_a(a)
  {}
private:
  int _a;
};
class B
{
public:
  B(int aa)
    :_aa(aa)
  {}
private:
  A _aa;
};
int main(void)
{
  B bb(1);
  return 0;
}

当自定义类型没有默认构造函数(全缺省、无参、编译器自定生成),需要在初始化列表定义,由默认构造函数,也可以在初始化列表进行定义。

有默认构造函数,默认构造函数的参数为缺省值,需要先考虑初始化列表,初始化列表可以看作是成员变量定义的地方。

【注意】

初始化只是构造函数的一部分,构造函数里面初始化赋值有俩种:第一种是在函数体内赋值,另一种是初始化列表定义。

也就是说,并不是初始化列表可以满足构造函数的问题,在构造函数内部可以进行一些其他的工作,例如内存的开辟,内存开辟后的判断,多维数组的建立等等。

class Stack
{
public:
  Stack(int capacity)
    :_capacity(capacity)
    ,_size(0)
  {
    _a = (int*)malloc(sizeof(int) * capacity);
    if (_a == nullptr)
    {
      perror("malloc fail");
      return;
    }
  }
private:
  int* _a;
  int _capacity;
  int _size;
};

3.尽量使用初始化列表初始化,因为不管你是否使用初始化列表,对于自定义类型成员变量,一定会先使用初始化列表。

4.成员变量在类中声明次序就是其在初始化列表中的初始化顺序,与其在初始化列表中的先后顺序无关。

class A
{
public:
  A(int a)
    :_a2(a)
    ,_a1(_a2)
  {}
private:
  int _a1;
  int _a2;
};

这段错误代码就演示了在初始化列表中先定义_a1时,使用_a2的值赋给_a1,由于_a2还未定义,所以_a1会出现随机值。

构造时的类型转化

class A
{
public:
  A(int a)
    :_a(a)
  {}
private:
  int _a;
};
int main(void)
{
  A aa1 = 2;
  return 0;
}

对对象初始化时,将一个整数类型赋值给自定义类型,这种方式被称为隐式类型转换,会先通过整数构造一个自定义类型的临时变量,临时变量在拷贝构造给需要构造的对象——>这种过程直接会被编译器有优化为直接构造,不通过拷贝构造。

在同一个表达式中,连续的构造编译器一般会优化。

这段代码报错的原因是,整数int类型在构造一个自定义类型的临时变量时,由于临时变量具有常性,所以在将临时变量拷贝给自定义类型时,临时变量会释放,引用会变成野引用,所以直接使用引用是不可以的。

可以使用const来使用引用,因为const引用不能被修改。

  • 使用explicit关键字修饰构造函数,将会禁止构造函数的隐式住转化。

static成员

概念

声明为static的类成员称为类的静态成员,用static修饰的成员变量称为静态成员变量。用static修饰的成员函数称之为静态成员函数。

  • 静态成员变量一定要在类外进行初始化。

例如:检查程序中有多少个对象正在使用

//使用全局变量
int _count = 0;
class A
{
public:
  A(int a)
    :_a(a)
  {
    ++_count;
  }
  A(const A& a)
  {
    ++_count;
  }
  ~A()
  {
    --_count;
  }
private:
  int _a;
};
void Fun1()
{
  A aa3(2);
  cout << __LINE__ << ":" << _count << endl;
}
int main(void)
{
  A aa1(1);
  cout << __LINE__ << ":" << _count << endl;
  A aa2(aa1);
  cout << __LINE__ << ":" << _count << endl;
  Fun1();
  cout << __LINE__ << ":" << _count << endl;
  return 0;
}

此代码使用全局变量来测试,但是全局变量的劣势是任何地方都可以将其修改。

类中除了可以定义成员变量,同时也可以定义静态成员变量。

class A
{
public:
  A(int a)
    :_a(a)
  {
    ++_count;
  }
  A(const A& a)
  {
    ++_count;
  }
  ~A()
  {
    --_count;
  }
  static int GetCount()
  {
    return _count;
  }
private:
  int _a;
  static int _count;
};
int A::_count = 0;
void Fun1()
{
  A aa3(2);
  cout << __LINE__ << ":" << A::GetCount() << endl;
}
int main(void)
{
  A aa1(1);
  cout << __LINE__ << ":" << A::GetCount() << endl;
  A aa2(aa1);
  cout << __LINE__ << ":" << A::GetCount() << endl;
  Fun1();
  cout << __LINE__ << ":" << A::GetCount() << endl;
  return 0;
}

对于成员变量与静态成员变量的区别是,成员变量属于每一个类对象,每一个对象中都会有成员变量,而静态成员变量只属于类,属于类中每一个类对象共享的变量,存储在静态区,其声明周期是全局的。

静态成员变量只在全局位置,类的外面定义,由于静态成员变量在类中被封装后变成私有,所以静态成员函数不可以被访问,所以可以使用类中公共的成员函数。

class A
{
public:
  A(int a)
    :_a(a)
  {
    ++_count;
  }
  A(const A& a)
  {
    ++_count;
  }
  ~A()
  {
    --_count;
  }
  int GetCount()
  {
    return _count;
  }
private:
  int _a;
  static int _count;
};
int A::_count = 0;
void Fun1()
{
  A aa3(2);
  cout << __LINE__ << ":" << aa3.GetCount() << endl;
}
int main(void)
{
  A aa1(1);
  cout << __LINE__ << ":" << aa1.GetCount() << endl;
  A aa2(aa1);
  cout << __LINE__ << ":" << aa1.GetCount() << endl;
  Fun1();
  cout << __LINE__ << ":" << aa1.GetCount() << endl;
  return 0;
}

这种方式是无法对没有对象的程序进行调用函数。

所以也可以使用静态成员函数,静态成员函数没有this指针,指定类域或者访问限定符就可以访问静态成员函数,静态成员函数中不能使用非静态成员变量,因为没有this指针。

【注意】由于静态成员变量无法进入构造,所以无法通过初始化列表定义,所以在声明静态成员变量时,无法给缺省值。

class Sum
{
public:
    Sum()
    {
        _sum += _num;
        ++_num;
    }
    static int GetSum()
    {
        return _sum;
    }
private:
    static int _num;
    static int _sum;
};
int Sum::_num = 1;
int Sum::_sum = 0;
class Solution {
public:
    int Sum_Solution(int n) 
    {
        Sum arr[n];   
        return Sum::GetSum();
    }
};
  • 设计一个类只能在栈上创建对象
class A
{
public:
  static A GetStackObj(int a)
  {
    A a1(a);
    return a1;
  }
private:
  A(int a1)
    :_a1(a1)
  {}
  int _a1;
};
int main(void)
{
  A a1 = A::GetStackObj();
  return 0;
}

特性

1.静态成员为所有类对象所共享,不属于某个具体的对象,存放在静态区

2.静态成员变量必须在类外面定义,定义时不添加static关键字,在类里面只是声明

3.类静态成员即可用 类名::静态成员 或者 对象.静态成员 来访问

4.静态成员函数没有隐藏的this指针,不能访问任何非静态成员

5.静态成员也是类的成员,受public,protected,privated的影响

6.非静态成员函数可以调用静态成员函数,原因是静态成员函数没有this指针,不构成影响

7.静态成员函数不能调用非静态成员函数,是因为非静态成员函数调用需要this指针,而静态成员函数没有this指针

友元

友元提供了一种突破封装的方式,有时可以利用友元提供方便,但使用友元会增加耦合度(关联度更加紧密),可能会破坏封装。

友元使用关键字friend

友元可以分为:友元函数友元类

友元函数

友元函数可以直接访问类的私有成员,它是定义在类外部的普通函数,不属于任何类,但需要在类的内部声明,声明时需要加friend关键字。

以流插入举例:

class Date
{
  friend ostream& operator<<(ostream& out, Date& d);
public:
  Date(int year, int month, int day)
    :_year(year)
    ,_month(month)
    ,_day(day)
  {}
private:
  int _year;
  int _month;
  int _day;
};
ostream& operator<<(ostream& out, Date& d)
{
  out << d._year << "/" << d._month << "/" << d._day;
  return out;
}

观察这段代码,无法将operator<<放在类中成为重载成员函数,是因为cout的输出流对象和隐含的this指针在抢占第一个参数的位置,this指针默认是第一个参数,也就是左操作数。

d << cout;

但是实际使用中cout需要是第一个形参对象,才能正常使用,可以将operator重载成全局函数,但是此时又会导致类外没办法访问成员,此时就需要友元来解决。

【注意】

1.友元函数可以访问类的私有和保护成员,但是不是类的成员函数

2.友元函数不能使用const修饰

3.友元函数可以哎类定义的任何地方声明,不受类访问限定符限制

4.一个函数可以是多个类的友元函数

5.友元函数的调用与普通的调用原理相同

友元类

class Date
{
  friend class Time;
public:
  Date(int year = 2000, int month = 1, int day = 1)
    :_year(year)
    , _month(month)
    , _day(day)
  {}
private:
  int _year;
  int _month;
  int _day;
};
class Time
{
public:
  Time(int hour, int minute, int second)
    :_hour(hour)
    ,_minute(minute)
    ,_second(second)
  {}
  void Print()
  {
    cout << _d._year << " " << _d._month << " " << _d._day << " "
       << _hour    << " " << _minute   << " " << _second;
  }
private:
  int _hour;
  int _minute;
  int _second;
  Date _d;
};
int main(void)
{
  Time T1(2, 23, 15);
  T1.Print();
  return 0;
}

友元类的所有成员函数都可以是另一个类的友元函数,都可以访问另一个类中的非公有成员。

  • 友元函数是单向的,不具有交换性。
  • 友元关系不能传递。
    例如:如果C是B的友元,B是A的友元,则不能说明C是A的友元。
  • 友元关系不能继承。

内部类

概念·:如果一个类定义在另一个类的内部,这个内部类就叫做内部类。内部类是一个独立的类,它不属于外部类,更不能通过外部类的对象去访问内部类的成员。外部类对内部类没有任何优越的访问权限。

【特性】

1.内部类可以定义在外部类的public、protected、private都是可以的,其效果不同。

2.注意内部类可以直接访问外部类中的static成员,不需要外部类的对象或者类名

3.sizeof(外部类)==外部类,和内部类没有任何关系。

4.sizeof(类)时,里面的静态变量不计算,是因为静态变量没有存储在对象里面。

5.内部类天生是外部类的友元。

class A
{
public:
  class B
  {
  public:
    B()
      :_b(2)
    {}
    void Print(const A& a)
    {
      cout << a._a << _b << endl;
    }
  private:
    int _b;
  };
  A()
    :_a(1)
  {}
private:
  int _a;
};
int main()
{
  A a;
  A::B b;
  b.Print(a);
  return 0;
}

【注意】

内部类就是外部类的友元类,同友元类一样,内部类可以通过外部类的对象参数来访问外部类中的所有成员,但外部类不是内部类的友元。

匿名对象

  • 有名对象
A aa1(1);
  • 匿名对象
A(2);
  • 有名对象调用调用函数
Date d1;
  d1.Print();
  • 匿名函数调用对象
Date().Print();

有名对象的生命周期在当前函数局部域,匿名对象的生命周期在当前行。

匿名对象与有名对象的区别仅仅是匿名无名,而有名有名。

  • 匿名对象与临时对象相似,具有常性。
//错误代码
  A& a1 = A(1);
  //正确代码
  const A& a2 = A(1);

const引用延长了匿名对象的生命周期,生命周期在当前函数局部域。

同时,同一行一个表达式中连续的构造+拷贝构造会进行优化。

总结

在类和对象阶段,需要体会到,类是对某一类实体(对象)来进行描述的,描述该对象具有哪些属性,哪些方法,描述完成后就形成了一种新的自定义类型,才有该自定义类型就可以实例化具体的对象。


相关文章
|
7月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
3月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
90 0
|
3月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
169 0
|
5月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
176 12
|
6月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
128 16
|
6月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
|
6月前
|
存储 编译器 C++
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。
|
6月前
|
安全 C++
【c++】继承(继承的定义格式、赋值兼容转换、多继承、派生类默认成员函数规则、继承与友元、继承与静态成员)
本文深入探讨了C++中的继承机制,作为面向对象编程(OOP)的核心特性之一。继承通过允许派生类扩展基类的属性和方法,极大促进了代码复用,增强了代码的可维护性和可扩展性。文章详细介绍了继承的基本概念、定义格式、继承方式(public、protected、private)、赋值兼容转换、作用域问题、默认成员函数规则、继承与友元、静态成员、多继承及菱形继承问题,并对比了继承与组合的优缺点。最后总结指出,虽然继承提高了代码灵活性和复用率,但也带来了耦合度高的问题,建议在“has-a”和“is-a”关系同时存在时优先使用组合。
345 6
|
6月前
|
编译器 C++
类和对象(下)C++
本内容主要讲解C++中的初始化列表、类型转换、静态成员、友元、内部类、匿名对象及对象拷贝时的编译器优化。初始化列表用于成员变量定义初始化,尤其对引用、const及无默认构造函数的类类型变量至关重要。类型转换中,`explicit`可禁用隐式转换。静态成员属类而非对象,受访问限定符约束。内部类是独立类,可增强封装性。匿名对象生命周期短,常用于临时场景。编译器会优化对象拷贝以提高效率。最后,鼓励大家通过重复练习提升技能!
|
7月前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)