【python】python猫眼电影数据抓取分析可视化(源码+数据集+论文)【独一无二】

简介: 【python】python猫眼电影数据抓取分析可视化(源码+数据集+论文)【独一无二】

一、设计要求

猫眼电影排行榜爬取电影排行榜前100名的图片及片名(可延伸:可以将爬取电影的电影名称、主要演员、导演、上映时间、(评分)另存放在一个文本文件里),图片单独存放在一个文件夹里。


二、设计思路

爬虫代码

# 略。
# 略。
# 略。
# 略。
# 略。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 猫眼 ” 获取。👈👈👈


使用for循环遍历不同页数的排行榜页面,每页显示10条电影信息(offset参数控制分页)。

发送HTTP GET请求获取页面内容,并打印响应文本。

使用lxml.etree解析HTML,提取电影名称、主演、上映时间等信息。

获取电影图片链接,并下载图片到指定文件夹。

将抓取到的电影信息追加写入到data.csv文件中。

在每次数据提取时,使用try-except块捕获并跳过可能的错误。

for i in range(0, 11):
        name = html.xpath(r'//*[@class="name"]/a/text()')[i].strip()
        star = html.xpath(r'//*[@class="star"]/text()')[i].strip()
        rtim = html.xpath(r'//*[@class="releasetime"]/text()')[i].strip()
        imges = html.xpath(r'//*[@id="app"]//a/img[2]')
        print(imges)
        img = [elem.get("data-src") for elem in imges][0]


这段代码通过循环遍历猫眼电影排行榜页面,抓取电影的相关信息(名称、主演、上映时间等)并保存到CSV文件,同时下载电影图片并保存到本地。


  1. 数据创建和预处理
    创建数据框
df = pd.DataFrame(data)
# 创建一个包含电影名称、主演、二演、三演和上映时间的DataFrame。
# 提取上映年份和创建时间段分段
df['上映年份'] = df['上映时间'].apply(lambda x: x[:4])
bins = [1990, 2000, 2010, 2020, 2030]
labels = ['1990-1999', '2000-2009', '2010-2019', '2020-2029']
df['上映时间段'] = pd.cut(df['上映年份'].astype(int), bins=bins, labels=labels, right=False)

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 猫眼 ” 获取。👈👈👈


三、可视化分析

2.1 柱状图:每个时间段上映的电影数量

period_counts = df['上映时间段'].value_counts().sort_index()
plt.figure(figsize=(10, 6))
period_counts.plot(kind='bar', color='skyblue')
plt.xlabel('上映时间段')
plt.ylabel('电影数量')
plt.title('每个时间段上映的电影数量')
plt.show()



统计每个时间段的电影数量。

使用plt.figure设置图表的大小。

使用period_counts.plot绘制柱状图。

设置图表的x轴标签、y轴标签和标题。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 猫眼 ” 获取。👈👈👈


2.2 饼图:电影主演分布(前10名)

actor_counts = df['主演'].value_counts().nlargest(10)
plt.figure(figsize=(10, 6))
actor_counts.plot(kind='pie', autopct='%1.1f%%', startangle=140, colors=plt.cm.Paired(range(len(actor_counts))))
plt.ylabel('')
plt.title('电影主演分布(前10名)')
plt.show()


c473fdc5866c43f3889fd46967b759d5.png

统计主演出现次数最多的前10名。

使用actor_counts.plot绘制饼图。

autopct='%1.1f%%'用于显示百分比。

startangle=140用于设置饼图的起始角度。

colors=plt.cm.Paired(range(len(actor_counts)))用于设置饼图的颜色。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 猫眼 ” 获取。👈👈👈


2.3 词云:电影名称

wordcloud = WordCloud(font_path='SimHei.ttf', width=800, height=400, background_color='white').generate(' '.join(df['名称']))

plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('电影名称词云')
plt.show()


使用WordCloud库生成词云。

设置字体路径、宽度、高度和背景颜色。

将电影名称拼接成一个字符串生成词云。

使用plt.imshow显示词云,并关闭坐标轴显示。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 猫眼 ” 获取。👈👈👈

相关文章
|
23天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
69 15
|
27天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
107 18
|
8月前
|
数据采集 数据可视化 IDE
用Python获得电影数据并可视化分析
用Python获得电影数据并可视化分析
116 0
|
7月前
|
数据采集 JSON 数据可视化
【Python实战】Python对中国500强排行榜数据进行可视化分析
【Python实战】Python对中国500强排行榜数据进行可视化分析
|
8月前
|
机器学习/深度学习 存储 数据可视化
数据分享|Python在Scikit-Learn可视化随机森林中的决策树分析房价数据
数据分享|Python在Scikit-Learn可视化随机森林中的决策树分析房价数据
|
7月前
|
机器学习/深度学习 数据可视化 数据挖掘
python每日可视化分析:从过去到现代数据分析的演进
python每日可视化分析:从过去到现代数据分析的演进
|
8月前
|
传感器 数据可视化 BI
python研究汽车传感器数据统计可视化分析
python研究汽车传感器数据统计可视化分析
|
8月前
|
自然语言处理 数据可视化 数据挖掘
数据代码分享|Python对全球Covid-19疫情失业数据相关性、可视化分析
数据代码分享|Python对全球Covid-19疫情失业数据相关性、可视化分析
|
8月前
|
数据可视化 数据处理 索引
Python用GARCH对ADBL股票价格时间序列趋势滚动预测、损失、可视化分析
Python用GARCH对ADBL股票价格时间序列趋势滚动预测、损失、可视化分析
|
8月前
|
新零售 分布式计算 数据可视化
数据分享|基于Python、Hadoop零售交易数据的Spark数据处理与Echarts可视化分析
数据分享|基于Python、Hadoop零售交易数据的Spark数据处理与Echarts可视化分析