【2024美赛】C题 Problem C: Momentum in Tennis网球运动中的势头 网球问题一python代码

简介: 本文提供了使用隐马尔可夫模型对2024美国大学生数学建模竞赛C题"网球运动中的势头"进行问题分析和数学建模的Python代码实现,包括建立状态、状态转移矩阵、发球方优势模型和胜率计算,并以可视化的方式展示了比赛进程中每位球员的预测胜率。

相关链接

【2024美赛】C题 Momentum in Tennis网球运动中的势头 25页中英文论文及Python代码

【2024美赛】C题 Problem C: Momentum in Tennis网球运动中的势头 网球问题一python代码

【2024美赛】C题 Problem C: Momentum in Tennis网球运动中的势头26页完整论文

【2024美国大学生数学建模竞赛】2024美赛C题网球运动中的势头,网球教练4.0没人比我更懂这个题了!!!

1 题目

http://t.csdnimg.cn/BzhFu

2 问题一数学模型

采用隐马尔可夫模型(Markov Model),这是一种描述随机过程的数学模型,它满足马尔可夫性质,即未来状态的概率只依赖于当前状态,与过去的状态无关。马尔可夫模型可以分为马尔可夫链和隐马尔可夫模型两种常见形式。模型建立过程如下,

  1. 建立状态: 在网球比赛中,每个时间点的状态可以用元组来表示:(状态可以是盘分0-0、1-0、2-0等,可以以是局分1-6、2-6等,可以是小比分15-0、30-0、40-0等,以及其他特征)。其中,球员表示当前发球的球员;比分状态表示局分和盘分的组合;发球方表示该时间点的发球方是哪个球员。

  2. 状态转移矩阵: 通过观察比赛数据,可以建立状态转移矩阵来描述状态之间的转移概率。对于相邻的时间点,可以统计从一个状态转移到另一个状态的次数,然后将这些计数转换为概率。举例来说,对于当前状态 (player1, score_status, server),下一个状态 (next_player1, next_score_status, server) 的转移概率可以表示为 transition_matrix[(player1, score_status, server)][(next_player1, next_score_status, server)]。本模型以比分出现的次频次作为状态转移概率,只考了盘分和局分,没有考虑小分,即15-0,30-0,40-0这样的小分。

  3. 发球方优势模型: 代码中使用了一个函数 serving_advantage 来模拟发球方的优势。该函数返回了一个假设的发球方赢得比赛的概率。

  4. 胜率计算: 根据状态转移矩阵和发球方优势模型,可以计算每个时间点球员的胜率。对于每个状态乘以发球优势比例 ,可以用以下公式计算其胜率:

问题一代码实现

  1. 读取了网球比赛数据,并根据比赛的局分和盘分创建了一个表示比赛积分状态的新列。

  2. 定义了一个函数 serving_advantage 用来计算发球方赢得比赛的概率,假设发球方赢得比赛的概率为60%,接发方赢得比赛的概率为40%。

  3. 构建了一个状态转移矩阵,根据比赛中每个时间点的状态计算了从当前状态到下一个状态的转移概率。

  4. 根据状态转移矩阵计算了每个时间点上两位球员的胜率,并将结果可视化为比赛进程图,显示了每位球员在比赛中的预测胜率。

因此,该模型以状态转移矩阵为基础,通过定义的发球优势和转移概率,可以预测每个时间点上两位球员在比赛中的胜率,并将预测结果可视化为比赛进程图。



import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 读取数据
data = pd.read_csv("data/Wimbledon_featured_matches.csv")

# 添加一列表示比赛积分状态(包括局分和盘分)
data['score_status'] = data['p1_games'].astype(str) + '-' + data['p2_games'].astype(str) + ' ' + data['p1_sets'].astype(str) + '-' + data['p2_sets'].astype(str)

# 只分析第一场比赛
match_1 = data.iloc[0]['match_id']
df = data[data['match_id']==match_1]
player1 = data.iloc[0]['player1']
player2 = data.iloc[0]['player2']
print(player1,player2)
df

在这里插入图片描述

# 定义函数计算发球方赢得比赛的概率
def serving_advantage(server):
    if server == 1:
        return 0.6  # 假设发球方赢得比赛的概率为60%
    else:
        return 0.4  # 假设接发方赢得比赛的概率为40%

# 构建状态转移矩阵
def build_transition_matrix(df):
    transition_matrix = {}
    for i in range(len(df) - 1):
        row = df.iloc[i]
        next_row = df.iloc[i + 1]
        current_state = (row['player1'],row['score_status'],row['server'])
        next_state = (next_row['player1'], next_row['score_status'],row['server'])
        if current_state not in transition_matrix:
            transition_matrix[current_state] = {}
        if next_state not in transition_matrix[current_state]:
            transition_matrix[current_state][next_state] = 0
        transition_matrix[current_state][next_state] += 1
    # 将计数转换为概率
    for current_state, next_states in transition_matrix.items():
        total_transitions = sum(next_states.values())
        for next_state in next_states:
            transition_matrix[current_state][next_state] /= total_transitions
    return transition_matrix

transition_matrix = build_transition_matrix(df)
transition_matrix

在这里插入图片描述

# 根据状态转移矩阵计算每个时间点的比赛胜率
def calculate_win_prob(transition_matrix):
    win_prob = {}
    for state in transition_matrix:
        # 运动员的胜率计算
        if state not in win_prob.keys():
            win_prob[state] = 0  # 初始化胜率为0
        for next_state, prob in transition_matrix[state].items():
            win_prob[state] = prob * serving_advantage(state[2])
    return win_prob

win_prob = calculate_win_prob(transition_matrix)
win_prob

在这里插入图片描述

# 可视化比赛进程
def visualize_match_flow(win_prob, df):
    x = np.arange(len(df))
    y_p1 = [win_prob[(df.iloc[i]['player1'], df.iloc[i]['score_status'],df.iloc[i]['server'])] for i in range(len(df))]
    print(y_p1[-10:])
    y_p2 = [1 - win_prob[(df.iloc[i]['player1'], df.iloc[i]['score_status'],df.iloc[i]['server'])] for i in range(len(df))]  # 第二个运动员的预测概率
    print(y_p2[-10:])
    plt.figure(figsize=(10, 5))
    plt.plot(x, y_p1, color='red', label=player1)
    plt.plot(x, y_p2, color='blue', label=player2)
    plt.xlabel('Point Number')
    plt.ylabel('Win Probability')
    plt.title('Match Flow')
    plt.legend()
    plt.show()

visualize_match_flow(win_prob, df)

在这里插入图片描述

目录
相关文章
|
1天前
|
SQL JavaScript 前端开发
基于Python访问Hive的pytest测试代码实现
根据《用Java、Python来开发Hive应用》一文,建立了使用Python、来开发Hive应用的方法,产生的代码如下
12 6
基于Python访问Hive的pytest测试代码实现
|
3天前
|
设计模式 缓存 开发者
Python中的装饰器:简化代码,提高可读性
【9月更文挑战第10天】在Python编程的世界中,装饰器是一种强大的工具,它允许开发者在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和生动的例子,带你了解装饰器的概念、使用方法及其在实际开发中的应用价值。我们将一起探索如何利用装饰器来简化代码结构,提升代码的可读性和可维护性,让你的编程之旅更加顺畅。
|
2天前
|
存储 安全 数据安全/隐私保护
安全升级!Python AES加密实战,为你的代码加上一层神秘保护罩
【9月更文挑战第12天】在软件开发中,数据安全至关重要。本文将深入探讨如何使用Python中的AES加密技术保护代码免受非法访问和篡改。AES(高级加密标准)因其高效性和灵活性,已成为全球最广泛使用的对称加密算法之一。通过实战演练,我们将展示如何利用pycryptodome库实现AES加密,包括生成密钥、初始化向量(IV)、加密和解密文本数据等步骤。此外,还将介绍密钥管理和IV随机性等安全注意事项。通过本文的学习,你将掌握使用AES加密保护敏感数据的方法,为代码增添坚实的安全屏障。
17 8
|
10天前
|
Python
探索Python中的装饰器:简化代码,增强功能
【9月更文挑战第3天】在Python的世界里,装饰器是那些静悄悄站在角落、却能大大改变游戏规则的神奇工具。它们就像是给你的函数穿上一件隐形的超级英雄斗篷,让函数拥有了超乎寻常的能力。本文将带领你一探究竟,看看如何通过几行简单的代码,就能让你的函数变得更加智能和强大。
|
1天前
|
机器学习/深度学习 测试技术 数据处理
KAN专家混合模型在高性能时间序列预测中的应用:RMoK模型架构探析与Python代码实验
Kolmogorov-Arnold网络(KAN)作为一种多层感知器(MLP)的替代方案,为深度学习领域带来新可能。尽管初期测试显示KAN在时间序列预测中的表现不佳,近期提出的可逆KAN混合模型(RMoK)显著提升了其性能。RMoK结合了Wav-KAN、JacobiKAN和TaylorKAN等多种专家层,通过门控网络动态选择最适合的专家层,从而灵活应对各种时间序列模式。实验结果显示,RMoK在多个数据集上表现出色,尤其是在长期预测任务中。未来研究将进一步探索RMoK在不同领域的应用潜力及其与其他先进技术的结合。
13 4
|
4天前
|
开发者 Python
Python中的装饰器:简化你的代码
【9月更文挑战第9天】本文将介绍Python中的一种强大工具——装饰器。我们将从基础概念开始,逐步深入到装饰器的实际应用,包括函数装饰器和类装饰器。我们将通过实例来展示如何利用装饰器简化代码,提高代码的可读性和可维护性。最后,我们将探讨装饰器的一些高级用法,以及如何避免在使用时可能遇到的问题。无论你是初学者还是有经验的开发者,这篇文章都将帮助你更好地理解和使用装饰器。
14 6
|
5天前
|
Python
揭秘!Python系统编程里那些让代码自由穿梭的神奇代码行
【9月更文挑战第9天】在Python的世界里,一些简洁的代码行却蕴含着强大的功能,如列表推导式让列表生成仅需一行代码:`squares = [x**2 for x in range(10)]`。`with`语句则能自动管理文件和网络连接的关闭,如`with open('example.txt', 'r') as file:`。`lambda`函数和装饰器则允许快速定义函数和增强功能,而上下文管理器更是资源处理的利器。这些特性让Python代码更加优雅高效。
16 4
|
7天前
|
缓存 测试技术 开发者
探索Python中的装饰器:简化你的代码之旅
【9月更文挑战第6天】本文将深入探讨Python中一个强大而神秘的特性——装饰器。我们将通过实际例子揭示装饰器的工作原理,并展示如何利用它们来简化和增强你的代码。无论你是初学者还是有经验的开发者,这篇文章都将为你打开一扇门,让你的代码更加优雅和高效。
|
4天前
|
安全 数据安全/隐私保护 Python
Python系统编程实战:文件系统操作与I/O管理,让你的代码更优雅
【9月更文挑战第10天】Python不仅在数据分析和Web开发中表现出色,在系统编程领域也展现出独特魅力。本文将带你深入探讨Python中的文件系统操作与I/O管理,涵盖os、shutil和pathlib等模块的基础使用方法,并通过示例代码展示如何优雅地实现这些功能。通过掌握缓冲、异步I/O等高级特性,你将能够编写更高效、安全且易于维护的Python代码。示例包括使用pathlib遍历目录、设置缓冲区提升文件写入性能以及使用aiofiles实现异步文件操作。掌握这些技能,让你在Python系统编程中更加得心应手。
11 2
|
10天前
|
Python
Python中的装饰器:简化你的代码
【9月更文挑战第3天】装饰器,这个听起来有些神秘的名词,实际上在Python中扮演着重要的角色。它们就像是你的代码的小助手,帮你自动完成一些重复性的工作,让你的代码更加简洁、易读。本文将通过一个简单的例子,带你走进装饰器的世界,看看它们是如何工作的。