【Tensorflow+keras】解决Exception has occurred: ValueError Shape mismatch: The shape of labels (received

简介: 在使用Keras构建的图像分类模型训练过程中,因使用了sparse_categorical_crossentropy损失函数而导致标签形状与模型输出形状不匹配的错误,解决方法是更换损失函数为categorical_crossentropy。

1 引言

使用网络做分类,训练的时候报错ValueError: Shape mismatch: The shape of labels (received (15,)) should equal the shape of logits except for the last dimension (received (5, 3))

from tensorflow.keras import datasets, layers, models

IMG_WIDTH = 192
IMG_HEIGHT = 192
train_dir = 'train'
validation_dir = 'validation'

from google.colab import drive
drive.mount('/content/drive')

import os
os.chdir("drive/My Drive/colab")

from tensorflow.keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
        train_dir,
        target_size=(IMG_WIDTH, IMG_HEIGHT),
        batch_size=5)

validation_datagen = ImageDataGenerator(rescale=1./255)
validation_generator = validation_datagen.flow_from_directory(
        validation_dir,
        target_size=(IMG_WIDTH, IMG_HEIGHT),
        batch_size=5)

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
                        input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
for i in range(2):
  model.add(layers.Conv2D(128, (3, 3), activation='relu'))
  model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Flatten())
model.add(layers.Dense(3, activation='softmax'))

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

history = model.fit_generator(
      train_generator,
      epochs=10,
      validation_data=validation_generator)

2 解决办法

原因是使用的损失函数,是sparse_categorical_crossentropy,在训练的时候会默认把label拉平,变成一维的,是有区别于categorical_crossentropy的。
要解决该问题就是更换损失函数为categorical_crossentropy或者其他的损失函数

model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
目录
相关文章
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
将Keras训练好的.hdf5模型转换为TensorFlow的.pb模型,然后再转换为TensorRT支持的.uff格式,并提供了转换代码和测试步骤。
93 3
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
|
2月前
|
机器学习/深度学习 TensorFlow API
使用 TensorFlow 和 Keras 构建图像分类器
【10月更文挑战第2天】使用 TensorFlow 和 Keras 构建图像分类器
|
2月前
|
机器学习/深度学习 移动开发 TensorFlow
深度学习之格式转换笔记(四):Keras(.h5)模型转化为TensorFlow(.pb)模型
本文介绍了如何使用Python脚本将Keras模型转换为TensorFlow的.pb格式模型,包括加载模型、重命名输出节点和量化等步骤,以便在TensorFlow中进行部署和推理。
89 0
|
4月前
|
机器学习/深度学习 IDE API
【Tensorflow+keras】Keras 用Class类封装的模型如何调试call子函数的模型内部变量
该文章介绍了一种调试Keras中自定义Layer类的call方法的方法,通过直接调用call方法并传递输入参数来进行调试。
35 4
|
4月前
|
Apache 开发者 Java
Apache Wicket揭秘:如何巧妙利用模型与表单机制,实现Web应用高效开发?
【8月更文挑战第31天】本文深入探讨了Apache Wicket的模型与表单处理机制。Wicket作为一个组件化的Java Web框架,提供了多种模型实现,如CompoundPropertyModel等,充当组件与数据间的桥梁。文章通过示例介绍了模型创建及使用方法,并详细讲解了表单组件、提交处理及验证机制,帮助开发者更好地理解如何利用Wicket构建高效、易维护的Web应用程序。
47 0
|
4月前
|
机器学习/深度学习 API TensorFlow
深入解析TensorFlow 2.x中的Keras API:快速搭建深度学习模型的实战指南
【8月更文挑战第31天】本文通过搭建手写数字识别模型的实例,详细介绍了如何利用TensorFlow 2.x中的Keras API简化深度学习模型构建流程。从环境搭建到数据准备,再到模型训练与评估,展示了Keras API的强大功能与易用性,适合初学者快速上手。通过简单的代码,即可完成卷积神经网络的构建与训练,显著降低了深度学习的技术门槛。无论是新手还是专业人士,都能从中受益,高效实现模型开发。
36 0
|
4月前
|
TensorFlow 算法框架/工具
【Tensorflow+Keras】用Tensorflow.keras的方法替代keras.layers.merge
在TensorFlow 2.0和Keras中替代旧版keras.layers.merge函数的方法,使用了新的层如add, multiply, concatenate, average, 和 dot来实现常见的层合并操作。
33 1
|
4月前
|
TensorFlow 算法框架/工具
【Tensorflow+Keras】学习率指数、分段、逆时间、多项式衰减及自定义学习率衰减的完整实例
使用Tensorflow和Keras实现学习率衰减的完整实例,包括指数衰减、分段常数衰减、多项式衰减、逆时间衰减以及如何通过callbacks自定义学习率衰减策略。
66 0
|
4月前
|
API 算法框架/工具
【Tensorflow+keras】使用keras API保存模型权重、plot画loss损失函数、保存训练loss值
使用keras API保存模型权重、plot画loss损失函数、保存训练loss值
33 0
|
4月前
|
TensorFlow API 算法框架/工具
【Tensorflow+keras】解决使用model.load_weights时报错 ‘str‘ object has no attribute ‘decode‘
python 3.6,Tensorflow 2.0,在使用Tensorflow 的keras API,加载权重模型时,报错’str’ object has no attribute ‘decode’
54 0