【Pytorch】解决Fan in and fan out can not be computed for tensor with fewer than 2 dimensions

简介: 本文提供了两种解决PyTorch中由于torchtext版本问题导致的“Fan in and fan out can not be computed for tensor with fewer than 2 dimensions”错误的方法。

问题

使用TEXT.build_vocab时报错Fan in and fan out can not be computed for tensor with fewer than 2 dimensions

vectors.unk_init = init.xavier_uniform_ # 没有命中的token的初始化方式
TEXT.build_vocab(train, min_freq=5, vectors=vectors)

原因是torchtext版本太高,不支持一维的词向量,仅仅支持二维以上的

解决

(1)方法一
是torchtext的版本问题,更换torchtext版本为0.2.3 问题解决

pip install torchtext==0.2.3

(2)方法二
在torchtext的vocab.py中的Vectors类里修改一行源码

目录
相关文章
|
10月前
|
机器学习/深度学习 存储 PyTorch
PyTorch基本数据类型tensor
PyTorch基本数据类型tensor
115 2
|
10月前
|
存储 PyTorch 算法框架/工具
PyTorch 中的 Tensor:属性、数据生成和基本操作
PyTorch 中的 Tensor:属性、数据生成和基本操作
299 0
|
10月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【PyTorch】-了解张量(Tensor)
【PyTorch】-了解张量(Tensor)
|
10月前
|
机器学习/深度学习 存储 PyTorch
PyTorch深度学习基础:张量(Tensor)详解
【4月更文挑战第17天】本文详细介绍了PyTorch中的张量,它是构建和操作深度学习数据的核心。张量是多维数组,用于存储和变换数据。PyTorch支持CPU和GPU张量,后者能加速大规模数据处理。创建张量可通过`torch.zeros()`、`torch.rand()`或直接从Python列表转换。张量操作包括数学运算、切片和拼接。在深度学习中,张量用于神经网络模型的构建和训练。理解张量对于掌握PyTorch至关重要。
|
10月前
|
存储 机器学习/深度学习 PyTorch
PyTorch核心--tensor 张量 !!
PyTorch核心--tensor 张量 !!
91 1
|
10月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【深度学习】Pytorch Tensor 张量
【1月更文挑战第10天】【深度学习】Pytorch Tensor 张量
|
10月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch深度学习基础之Tensor对象及其应用的讲解及实战(附源码 简单易懂 包括分段 映射 矩阵乘法 随机数等等)
PyTorch深度学习基础之Tensor对象及其应用的讲解及实战(附源码 简单易懂 包括分段 映射 矩阵乘法 随机数等等)
111 1
|
10月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【深度学习】Pytorch Tensor 张量
【1月更文挑战第26天】【深度学习】Pytorch Tensor 张量
|
10月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch深度学习基础之Tensor的变换、拼接、拆分讲解及实战(附源码 超详细必看)
PyTorch深度学习基础之Tensor的变换、拼接、拆分讲解及实战(附源码 超详细必看)
161 0
|
10月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch深度学习基础之Tensor的索引和切片讲解及实战(附源码 简单易懂)
PyTorch深度学习基础之Tensor的索引和切片讲解及实战(附源码 简单易懂)
256 0

热门文章

最新文章