PyTorch深度学习基础之Tensor的变换、拼接、拆分讲解及实战(附源码 超详细必看)

简介: PyTorch深度学习基础之Tensor的变换、拼接、拆分讲解及实战(附源码 超详细必看)

觉得有帮助请点赞关注收藏~~~

PyTorch提供了大量的对Tensor进行操作的函数或者方法,这些函数内部使用指针实现对矩阵的形状变换拼接拆分等操作,使得人们无须关心Tensor在内存中的物理结构或者管理指针就可以方便且快速的执行这些操作,下面nelement,ndimension,size等方法 可以查看矩阵元素的个数,轴的个数以及维度等

测试代码如下

import  torch
import numpy as np
a=torch.rand(1,2,3,4,5)
print("元素个数",a.nelement())
print("轴的个数",a.ndimension())
print("矩阵维度",a.shape)

在PyTorch中,reshape和view都能用来被更改Tensor的维度,它们区别在于view要求Tensor的物理内存必须是连续的,否则将报错,reshape则没有这种要求,但是view返回的一定是一个索引,reshape返回的是引用还是复制是不确定的

代码如下

import  torch
import numpy as np
a=torch.rand(1,2,3,4,5)
print("元素个数",a.nelement())
print("轴的个数",a.ndimension())
print("矩阵维度",a.shape)
###########
b=a.view(2*3,4*5)
print(b.shape)
c=a.reshape(-1)
print(c.shape)
d=a.reshape(2*3,-1)
print(d.shape)

squeeze和unsqueeze用来给Tensor去掉和添加轴,分别去掉维度为1 的轴和添加维度为1的轴

b=torch.squeeze(a)
print(b.shape)

t和transpose用于转置二维矩阵,这两个函数只接受二维Tensor,t是transpose的简化版

对于高纬度Tensor,可以使用permute方法来变换维度

a=torch.tensor([[2]])
b=torch.tensor([[2,3]])
print(torch.transpose(a,1,0,))
print(torch.t(a))
print(torch.transpose(b,1,0,))
print(torch.t(b))
############
a=torch.rand((1,224,224,3))
print(a.shape)
b=a.permute(0,3,1,2)
print(b.shape)

PyTorch提供了cat和stack方法用于拼接矩阵,cat在已有的轴dim上拼接矩阵,给定轴的维度可以不同,而其他轴的维度必须相同,stack在新的轴上面拼接,它要求被拼接的矩阵所有维度都相同

a=torch.randn(2,3)
b=torch.randn(3,3)
c=torch.cat((a,b))
d=torch.cat((b,b,b),dim=1)
print(c.shape)
print(d.shape)
c=torch.stack((b,b),dim=1)
d=torch.stack((b,b),dim=0)
print(c.shape)
print(d.shape)

除了拼接之外,还有split和chunk用于拆分矩阵,它们不同之处在于split传入的是拆分后每个矩阵的大小,可以传入list也可以传入整数,而chunk传入的是拆分的矩阵个数

 

a=torch.randn(10,3)
for x in torch.split(a,[1,2,3,4],dim=0):
    print(x.shape)
for x in torch.split(a,4,dim=0):
    print(x.shape)
for x in torch.chunk(a,4,dim=0):
    print(x.shape)

最后  全部测试代码如下

import  torch
import numpy as np
a=torch.rand(1,2,3,4,5)
print("元素个数",a.nelement())
print("轴的个数",a.ndimension())
print("矩阵维度",a.shape)
###########
b=a.view(2*3,4*5)
print(b.shape)
c=a.reshape(-1)
print(c.shape)
d=a.reshape(2*3,-1)
print(d.shape)
#############
b=torch.squeeze(a)
print(b.shape)
#############
a=torch.tensor([[2]])
b=torch.tensor([[2,3]])
print(torch.transpose(a,1,0,))
print(torch.t(a))
print(torch.transpose(b,1,0,))
print(torch.t(b))
############
a=torch.rand((1,224,224,3))
print(a.shape)
b=a.permute(0,3,1,2)
print(b.shape)
################
a=torch.randn(2,3)
b=torch.randn(3,3)
c=torch.cat((a,b))
d=torch.cat((b,b,b),dim=1)
print(c.shape)
print(d.shape)
c=torch.stack((b,b),dim=1)
d=torch.stack((b,b),dim=0)
print(c.shape)
print(d.shape)
############
a=torch.randn(10,3)
for x in torch.split(a,[1,2,3,4],dim=0):
    print(x.shape)
for x in torch.split(a,4,dim=0):
    print(x.shape)
for x in torch.chunk(a,4,dim=0):
    print(x.shape)
相关文章
|
5月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
295 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
4月前
|
机器学习/深度学习 自然语言处理 算法
PyTorch PINN实战:用深度学习求解微分方程
物理信息神经网络(PINN)是一种将深度学习与物理定律结合的创新方法,特别适用于微分方程求解。传统神经网络依赖大规模标记数据,而PINN通过将微分方程约束嵌入损失函数,显著提高数据效率。它能在流体动力学、量子力学等领域实现高效建模,弥补了传统数值方法在高维复杂问题上的不足。尽管计算成本较高且对超参数敏感,PINN仍展现出强大的泛化能力和鲁棒性,为科学计算提供了新路径。文章详细介绍了PINN的工作原理、技术优势及局限性,并通过Python代码演示了其在微分方程求解中的应用,验证了其与解析解的高度一致性。
437 5
PyTorch PINN实战:用深度学习求解微分方程
|
5月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
|
7月前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
|
8月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
205 7
|
3月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
451 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
6月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
259 22
|
7月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
512 6
|
3月前
|
机器学习/深度学习 数据采集 存储
深度学习在DOM解析中的应用:自动识别页面关键内容区块
本文探讨了如何通过深度学习模型优化东方财富吧财经新闻爬虫的性能。针对网络请求、DOM解析与模型推理等瓶颈,采用代理复用、批量推理、多线程并发及模型量化等策略,将单页耗时从5秒优化至2秒,提升60%以上。代码示例涵盖代理配置、TFLite模型加载、批量预测及多线程抓取,确保高效稳定运行,为大规模数据采集提供参考。
|
5月前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
163 40

推荐镜像

更多