【Pandas】Pandas的DataFrame按行插入list数据或者读取一行并存为csv文件

简介: 本文提供了使用Pandas库对DataFrame进行操作的示例代码。

1 DataFrame插入一行

# 初始化一个空Dataframe
import pandas as pd

data_frame = pd.DataFrame(columns=['f0','f1', 'f2', 'f3','f4','f5','f6','f7', 'f8', 'f9','f10','f11','f12','f13', 'f14', 'f15','f16','f17'],index=[])

# 插入一行,如果需要插入多行,加个for循环即可
singlelist = [0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]
indexsize = data_frame.index.size
data_frame.loc[indexsize] =singlelist
data_frame.index = data_frame.index + 1 
data_frame.to_csv('data_frame.csv',index=False)

1.png

DataFrame读取某行

# 读取第一行
data_frame.loc[data_frame.index[0]].values.tolist()

# 读取第二行
data_frame.loc[data_frame.index[1]].values.tolist()
目录
相关文章
|
1月前
|
Python
使用 Pandas 库时,如何处理数据的重复值?
在使用Pandas处理数据重复值时,需要根据具体的数据特点和分析需求,选择合适的方法来确保数据的准确性和唯一性。
119 8
|
2天前
|
存储 数据挖掘 数据处理
Pandas 数据筛选:条件过滤
Pandas 是 Python 最常用的数据分析库之一,提供了强大的数据结构和工具。本文从基础到高级,介绍如何使用 Pandas 进行条件过滤,包括单一条件、多个条件过滤、常见问题及解决方案,以及动态和复杂条件过滤的高级用法。希望本文能帮助你更好地利用 Pandas 处理数据。
104 78
|
19天前
|
存储 数据挖掘 数据处理
掌握Pandas核心数据结构:Series与DataFrame的四种创建方式
本文介绍了 Pandas 库中核心数据结构 Series 和 DataFrame 的四种创建方法,包括从列表、字典、标量和 NumPy 数组创建 Series,以及从字典、列表的列表、NumPy 数组和 Series 字典创建 DataFrame,通过示例详细说明了每种创建方式的具体应用。
119 67
|
4天前
|
数据挖掘 索引 Python
Pandas数据读取:CSV文件
Pandas 是 Python 中强大的数据分析库,`read_csv` 函数用于从 CSV 文件中读取数据。本文介绍 `read_csv` 的基本用法、常见问题及其解决方案,并通过代码案例详细说明。涵盖导入库、读取文件、指定列名和分隔符、处理文件路径错误、编码问题、大文件读取、数据类型问题、日期时间解析、空值处理、跳过行、指定索引列等。高级用法包括自定义列名映射、处理多行标题和注释行。希望本文能帮助你更高效地使用 Pandas 进行数据读取和处理。
37 13
|
5天前
|
存储 数据挖掘 索引
Pandas数据结构:Series与DataFrame
本文介绍了 Python 的 Pandas 库中两种主要数据结构 `Series` 和 ``DataFrame`,从基础概念入手,详细讲解了它们的创建、常见问题及解决方案,包括数据缺失处理、数据类型转换、重复数据删除、数据筛选、排序、聚合和合并等操作。同时,还提供了常见报错及解决方法,帮助读者更好地理解和使用 Pandas 进行数据分析。
36 10
|
1天前
|
算法 数据挖掘 索引
Pandas数据排序:单列与多列排序详解
本文介绍了Pandas库中单列和多列排序的方法及常见问题的解决方案。单列排序使用`sort_values()`方法,支持升序和降序排列,并解决了忽略大小写、处理缺失值和索引混乱等问题。多列排序同样使用`sort_values()`,可指定不同列的不同排序方向,解决列名错误和性能优化等问题。掌握这些技巧能提高数据分析效率。
20 9
|
29天前
|
大数据 UED
「Mac畅玩鸿蒙与硬件16」鸿蒙UI组件篇6 - List 和 Grid 组件展示数据列表
List 和 Grid 是鸿蒙开发中的核心组件,用于展示动态数据。List 适合展示垂直或水平排列的数据列表,而 Grid 则适用于展示商品或图片的网格布局。本篇将展示如何封装组件,并通过按钮实现布局切换,提升界面的灵活性和用户体验。
63 9
「Mac畅玩鸿蒙与硬件16」鸿蒙UI组件篇6 - List 和 Grid 组件展示数据列表
|
19天前
|
存储 数据挖掘 索引
Pandas Series 和 DataFrame 常用属性详解及实例
Pandas 是 Python 数据分析的重要工具,其核心数据结构 Series 和 DataFrame 广泛应用。本文详细介绍了这两种结构的常用属性,如 `index`、`values`、`dtype` 等,并通过具体示例帮助读者更好地理解和使用这些属性,提升数据分析效率。
36 4
|
1月前
|
Python
Pandas 常用函数-数据选择和过滤
Pandas 常用函数-数据选择和过滤
16 0
|
6月前
|
安全 Java
java线程之List集合并发安全问题及解决方案
java线程之List集合并发安全问题及解决方案
1020 1
下一篇
DataWorks