Compromise Programming(妥协规划法)解释与Python代码示例

简介: 【7月更文挑战第17天】

Compromise Programming(妥协规划法)解释与Python代码示例

一、Compromise Programming概述

Compromise Programming(妥协规划法)是一种在多个目标或约束条件之间寻找最佳平衡点的优化方法。在实际应用中,我们经常会遇到多个目标相互冲突或相互制约的情况,此时就需要采用妥协规划法来找到一个或多个解,使得这些目标或约束条件在某种程度上达到最优。

在妥协规划法中,我们通常会将每个目标或约束条件转化为一个或多个数学表达式,并赋予它们相应的权重。然后,通过调整这些权重和数学表达式的形式,我们可以得到一个或多个解,这些解在整体上能够较好地满足所有目标或约束条件。

二、Python代码示例

下面是一个使用Python实现妥协规划法的简单示例。在这个示例中,我们假设有两个目标函数f1和f2,它们分别代表两个相互冲突的目标。我们的目标是通过调整权重w1和w2,找到一个解x,使得w1f1(x) + w2f2(x)的值最小。

导入需要的库

import numpy as np
from scipy.optimize import minimize

定义目标函数f1和f2

def f1(x):
return x[0]2 + x[1]2 # 假设f1是x[0]和x[1]的平方和

def f2(x):
return (x[0]-1)2 + (x[1]-1)2 # 假设f2是(x[0]-1)和(x[1]-1)的平方和

定义妥协规划的目标函数

def compromise_objective(x, w1=0.5, w2=0.5):
return w1 f1(x) + w2 f2(x)

定义初始猜测值和约束条件(本例中没有显式约束)

x0 = np.array([0, 0]) # 初始猜测值

使用scipy的minimize函数进行优化

这里我们使用'SLSQP'方法,它是一种序列最小二乘规划方法,适用于有约束的优化问题

但由于本例中没有显式约束,所以也可以使用其他方法

result = minimize(compromise_objective, x0, method='SLSQP')

输出结果

print("最优解:", result.x)
print("最优值:", result.fun)

注释:

1. 我们首先导入了numpy和scipy.optimize库,这两个库在Python中常用于数值计算和优化问题。

2. 然后我们定义了目标函数f1和f2,它们分别代表两个相互冲突的目标。

3. 接着我们定义了妥协规划的目标函数compromise_objective,它接受一个解x和两个权重w1、w2作为输入,并返回w1f1(x) + w2f2(x)的值。

4. 我们还定义了初始猜测值x0和约束条件(本例中没有显式约束)。

5. 最后我们使用scipy的minimize函数对妥协规划的目标函数进行优化,并输出最优解和最优值。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
在这个示例中,我们使用了SciPy库中的minimize函数来进行优化。该函数接受一个目标函数、一个初始猜测值和可选的约束条件作为输入,并返回最优解和最优值。在本例中,我们没有显式定义约束条件,所以minimize函数会尝试找到使目标函数最小的解。通过调整权重w1和w2的值,我们可以改变f1和f2在目标函数中的相对重要性,从而实现妥协规划。
原文链接:https://blog.csdn.net/u014158430/article/details/140502134

相关文章
|
2月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
185 26
|
2月前
|
测试技术 开发者 Python
Python单元测试入门:3个核心断言方法,帮你快速定位代码bug
本文介绍Python单元测试基础,详解`unittest`框架中的三大核心断言方法:`assertEqual`验证值相等,`assertTrue`和`assertFalse`判断条件真假。通过实例演示其用法,帮助开发者自动化检测代码逻辑,提升测试效率与可靠性。
322 1
|
2月前
|
机器学习/深度学习 算法 调度
基于多动作深度强化学习的柔性车间调度研究(Python代码实现)
基于多动作深度强化学习的柔性车间调度研究(Python代码实现)
174 1
|
1月前
|
测试技术 Python
Python装饰器:为你的代码施展“魔法”
Python装饰器:为你的代码施展“魔法”
235 100
|
1月前
|
开发者 Python
Python列表推导式:一行代码的艺术与力量
Python列表推导式:一行代码的艺术与力量
366 95
|
2月前
|
Python
Python的简洁之道:5个让代码更优雅的技巧
Python的简洁之道:5个让代码更优雅的技巧
236 104
|
2月前
|
开发者 Python
Python神技:用列表推导式让你的代码更优雅
Python神技:用列表推导式让你的代码更优雅
432 99
|
1月前
|
缓存 Python
Python装饰器:为你的代码施展“魔法
Python装饰器:为你的代码施展“魔法
153 88
|
2月前
|
IDE 开发工具 开发者
Python类型注解:提升代码可读性与健壮性
Python类型注解:提升代码可读性与健壮性
265 102
|
1月前
|
监控 机器人 编译器
如何将python代码打包成exe文件---PyInstaller打包之神
PyInstaller可将Python程序打包为独立可执行文件,无需用户安装Python环境。它自动分析代码依赖,整合解释器、库及资源,支持一键生成exe,方便分发。使用pip安装后,通过简单命令即可完成打包,适合各类项目部署。

推荐镜像

更多