Transformers 4.37 中文文档(九十四)(3)https://developer.aliyun.com/article/1564066
TapasForMaskedLM
class transformers.TapasForMaskedLM
( config )
参数
config
(TapasConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
在顶部带有语言建模
头的 Tapas 模型。该模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **kwargs ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)— 词汇表中输入序列令牌的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选)— 用于避免在填充令牌索引上执行注意力。掩码值选定在[0, 1]
范围内:
- 对于
未被掩码
的令牌为 1, - 对于
被掩码
的令牌为 0。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length, 7)
的torch.LongTensor
,可选)— 编码表格结构的令牌索引。可以使用 AutoTokenizer 获取索引。有关更多信息,请参见此类。
什么是令牌类型 ID?position_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 每个输入序列令牌在位置嵌入中的位置索引。如果 TapasConfig 的reset_position_index_per_cell
设置为True
,将使用相对位置嵌入。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
,可选)— 用于使自注意力模块中的选定头部失效的掩码。掩码值选定在[0, 1]
范围内:- 1 表示头部未被掩码,- 0 表示头部被掩码。inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)— 可选地,您可以选择直接传递嵌入表示而不是传递input_ids
。如果您希望更多地控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。return_dict
(bool
,可选)— 是否返回一个 ModelOutput 而不是一个普通元组。labels
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
范围内(参见input_ids
文档字符串)。将索引设置为-100
的令牌将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]
范围内的令牌。
返回
transformers.modeling_outputs.MaskedLMOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或当config.return_dict=False
时)包含根据配置(TapasConfig)和输入的各种元素。
loss
(形状为(1,)
的torch.FloatTensor
,可选,在提供labels
时返回)— 掩码语言建模(MLM)损失。logits
(torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
。
模型在每一层的输出的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TapasForMaskedLM 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TapasForMaskedLM >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base") >>> model = TapasForMaskedLM.from_pretrained("google/tapas-base") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> inputs = tokenizer( ... table=table, queries="How many [MASK] has George [MASK] played in?", return_tensors="pt" ... ) >>> labels = tokenizer( ... table=table, queries="How many movies has George Clooney played in?", return_tensors="pt" ... )["input_ids"] >>> outputs = model(**inputs, labels=labels) >>> logits = outputs.logits
TapasForSequenceClassification
class transformers.TapasForSequenceClassification
( config )
参数
config
(TapasConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
在顶部具有序列分类头的 Tapas 模型(在池化输出的顶部有一个线性层),例如用于表格推理任务的 TabFact(Chen 等,2020)。
该模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
该模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
之间:
- 对于未被掩盖的标记,值为 1,
- 对于被掩盖的标记,值为 0。
- 什么是注意力掩码?
token_type_ids
(torch.LongTensor
of shape(batch_size, sequence_length, 7)
, optional) — 编码表格结构的标记索引。可以使用 AutoTokenizer 获取索引。有关更多信息,请参阅此类。
什么是 token type IDs?position_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。如果 TapasConfig 的reset_position_index_per_cell
设置为True
,将使用相对位置嵌入。选择范围为[0, config.max_position_embeddings - 1]
。
什么是 position IDs?head_mask
(torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — 用于使自注意力模块的选定头部无效的掩码。掩码值选择在[0, 1]
范围内:- 1 表示头部未被掩码,- 0 表示头部被掩码。inputs_embeds
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。labels
(torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。注意:在原始实现中称为“classification_class_index”。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
时)包含根据配置(TapasConfig)和输入的各种元素。
loss
(torch.FloatTensor
of shape(1,)
, optional, 当提供labels
时返回) — 分类(如果 config.num_labels==1 则为回归)损失。logits
(torch.FloatTensor
of shape(batch_size, config.num_labels)
) — 分类(如果 config.num_labels==1 则为回归)得分(SoftMax 之前)。hidden_states
(tuple(torch.FloatTensor)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入的输出之一,+ 每层的输出之一)。
模型在每一层输出的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
在注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TapasForSequenceClassification 的前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用 Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TapasForSequenceClassification >>> import torch >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-tabfact") >>> model = TapasForSequenceClassification.from_pretrained("google/tapas-base-finetuned-tabfact") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = [ ... "There is only one actor who is 45 years old", ... "There are 3 actors which played in more than 60 movies", ... ] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt") >>> labels = torch.tensor([1, 0]) # 1 means entailed, 0 means refuted >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits
TapasForQuestionAnswering
class transformers.TapasForQuestionAnswering
( config: TapasConfig )
参数
config
(TapasConfig)— 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
Tapas 模型具有用于表格问答任务的单元选择头和可选的聚合头(用于计算 logits
和可选的 logits_aggregation
的隐藏状态输出上的线性层),例如用于 SQA、WTQ 或 WikiSQL 监督任务。
此模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
前进
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None table_mask: Optional = None labels: Optional = None aggregation_labels: Optional = None float_answer: Optional = None numeric_values: Optional = None numeric_values_scale: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.models.tapas.modeling_tapas.TableQuestionAnsweringOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)— 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
() 获取详细信息。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
:
- 对于未被
masked
的标记为 1。 - 对于被
masked
的标记为 0。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length, 7)
的torch.LongTensor
,可选)— 编码表格结构的标记索引。可以使用 AutoTokenizer 获取索引。查看此类获取更多信息。
什么是标记类型 ID?position_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。如果 TapasConfig 的reset_position_index_per_cell
设置为True
,将使用相对位置嵌入。选择范围为[0, config.max_position_embeddings - 1]
。
什么是位置 ID?head_mask
(torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — 用于使自注意力模块中的选定头部失效的掩码。选择的掩码值在[0, 1]
范围内:- 1 表示头部未被掩码,- 0 表示头部被掩码。inputs_embeds
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,可以直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将很有用。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回的张量下的attentions
。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回的张量下的hidden_states
。return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。table_mask
(torch.LongTensor
of shape(batch_size, seq_length)
, optional) — 表的掩码。指示哪些标记属于表格(1)。问题标记、表头和填充为 0。labels
(torch.LongTensor
of shape(batch_size, seq_length)
, optional) — 用于计算分层单元选择损失的每个标记的标签。这编码了答案在表中出现的位置。可以使用 AutoTokenizer 获得。
- 1 表示是答案的标记,
- 0 表示不是答案的标记。
aggregation_labels
(torch.LongTensor
of shape(batch_size, )
, optional) — 用于计算聚合损失的批次中每个示例的聚合函数索引。索引应在[0, ..., config.num_aggregation_labels - 1]
范围内。仅在强监督聚合(WikiSQL-supervised)的情况下需要。float_answer
(torch.FloatTensor
of shape(batch_size, )
, optional) — 批次中每个示例的浮点答案。对于单元选择问题,设置为float(‘nan’)。仅在弱监督(WTQ)的情况下需要计算聚合掩码和回归损失。numeric_values
(torch.FloatTensor
of shape(batch_size, seq_length)
, optional) — 每个标记的数值,对于不是数值的标记为 NaN。可以使用 AutoTokenizer 获得。仅在弱监督聚合(WTQ)的情况下需要计算回归损失。numeric_values_scale
(torch.FloatTensor
of shape(batch_size, seq_length)
, optional) — 每个标记的数值的规模。可以使用 AutoTokenizer 获得。仅在弱监督聚合(WTQ)的情况下需要计算回归损失。
返回
transformers.models.tapas.modeling_tapas.TableQuestionAnsweringOutput 或 tuple(torch.FloatTensor)
一个 transformers.models.tapas.modeling_tapas.TableQuestionAnsweringOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
)包括根据配置(TapasConfig)和输入的不同元素。
loss
(torch.FloatTensor
,形状为(1,)
,可选,当提供labels
(可能还有answer
、aggregation_labels
、numeric_values
和numeric_values_scale
)时返回) — 作为分层单元选择对数似然损失的总和以及(可选)半监督回归损失和(可选)聚合的监督损失的总损失。logits
(torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 每个标记的单元选择头的预测分数。logits_aggregation
(torch.FloatTensor
, 可选, 形状为(batch_size, num_aggregation_labels)
) — 聚合头的预测分数,对于每个聚合运算符。hidden_states
(tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出)的形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态加上初始嵌入输出。attentions
(tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个)的形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TapasForQuestionAnswering 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的方法需要在这个函数内定义,但应该在之后调用Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TapasForQuestionAnswering >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-wtq") >>> model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> logits_aggregation = outputs.logits_aggregation
TensorFlowHide TensorFlow 内容
TFTapasModel
class transformers.TFTapasModel
( config: TapasConfig *inputs **kwargs )
参数
config
(TapasConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
裸的 Tapas 模型变换器输出原始的隐藏状态,没有任何特定的头部。
这个模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有相关信息。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用 model.fit()
等方法时,您应该可以“轻松使用” - 只需以 model.fit()
支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:
- 只有一个包含
input_ids
的张量,没有其他内容:model(input_ids)
- 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 subclassing 创建模型和层时,您无需担心这些内容,因为您可以像对待其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or tuple(tf.Tensor)
参数
input_ids
(np.ndarray
,tf.Tensor
,List[tf.Tensor]
``Dict[str, tf.Tensor]或
Dict[str, np.ndarray],每个示例的形状必须为
(batch_size, sequence_length)`) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
() 和 PreTrainedTokenizer.encode()。
什么是输入 IDs?attention_mask
(np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
范围内:
- 对于未被
masked
的标记,值为 1。 - 对于被
masked
的标记,值为 0。
- 什么是注意力掩码?
token_type_ids
(np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length, 7)
,可选) — 编码表格结构的标记索引。可以使用 AutoTokenizer 获取索引。查看此类以获取更多信息。
什么是 token type IDs?position_ids
(np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。如果 TapasConfig 的reset_position_index_per_cell
设置为True
,将使用相对位置嵌入。选择范围为[0, config.max_position_embeddings - 1]
。
什么是位置 IDs?head_mask
(np.ndarray
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中的选定头部失效的掩码。掩码值选择在[0, 1]
范围内:
- 值为 1 表示头部未被
masked
。 - 值为 0 表示头部被
masked
。
inputs_embeds
(np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权来将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_attentions
(bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。这个参数只能在急切模式下使用,在图模式下,将使用配置中的值。output_hidden_states
(bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。这个参数只能在急切模式下使用,在图模式下,将使用配置中的值。return_dict
(bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。这个参数可以在急切模式下使用,在图模式下,该值将始终设置为 True。training
(bool
, 可选, 默认为`False“) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间有不同的行为)。
返回
transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling 或tf.Tensor
元组
一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包括根据配置(TapasConfig)和输入的不同元素。
last_hidden_state
(形状为
(batch_size, sequence_length, hidden_size)的
tf.Tensor`) — 模型最后一层的隐藏状态的序列。pooler_output
(形状为
(batch_size, hidden_size)的
tf.Tensor`) — 序列第一个标记(分类标记)的最后一层隐藏状态,进一步由一个线性层和一个 Tanh 激活函数处理。线性层的权重是在预训练期间从下一个句子预测(分类)目标中训练的。
这个输出通常不是输入的语义内容的一个好摘要,你通常最好是对整个输入序列的隐藏状态进行平均或汇总。hidden_states
(tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
模型在每一层输出的隐藏状态以及初始嵌入输出。attentions
(tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
TFTapasModel 的前向方法,覆盖__call__
特殊方法。
虽然前向传递的方法需要在这个函数内定义,但应该在之后调用Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TapasModel >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base") >>> model = TapasModel.from_pretrained("google/tapas-base") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state
Transformers 4.37 中文文档(九十四)(5)https://developer.aliyun.com/article/1564068