Transformers 4.37 中文文档(二十)(4)https://developer.aliyun.com/article/1563300
FlaxAlbertForPreTraining
class transformers.FlaxAlbertForPreTraining
( config: AlbertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
config
(AlbertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。dtype
(jax.numpy.dtype
,可选,默认为jax.numpy.float32
)— 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。
这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype
,则所有计算将使用给定的dtype
执行。
“请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。”
如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
Albert 模型,在预训练期间在顶部有两个头部:一个掩码语言建模
头部和一个句子顺序预测(分类)
头部。
此模型继承自 FlaxPreTrainedModel。检查超类文档以获取库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。
此模型还是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取与一般用法和行为相关的所有内容。
最后,此模型支持 JAX 的固有特性,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.models.albert.modeling_flax_albert.FlaxAlbertForPreTrainingOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
)— 词汇表中输入序列令牌的索引。
可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
输入 ID 是什么?attention_mask
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 用于避免在填充令牌索引上执行注意力的蒙版。蒙版值在[0, 1]
中选择:
- 对于未被“掩码”的令牌,为 1。
- 对于被“掩码”的令牌,为 0。
- 注意力蒙版是什么?
token_type_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 段令牌索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于句子 A令牌,
- 1 对应于句子 B令牌。
- 令牌类型 ID 是什么?
position_ids
(numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。
返回值
transformers.models.albert.modeling_flax_albert.FlaxAlbertForPreTrainingOutput
或tuple(torch.FloatTensor)
一个transformers.models.albert.modeling_flax_albert.FlaxAlbertForPreTrainingOutput
或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(AlbertConfig)和输入的各种元素。
prediction_logits
(jnp.ndarray
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头部的预测分数(SoftMax 之前每个词汇标记的分数)。sop_logits
(jnp.ndarray
of shape(batch_size, 2)
) — 下一个序列预测(分类)头部的预测分数(SoftMax 之前的 True/False 连续性分数)。hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
模型在每一层输出处的隐藏状态以及初始嵌入输出。attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的前向方法,覆盖__call__
特殊方法。
尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行前处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxAlbertForPreTraining >>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2") >>> model = FlaxAlbertForPreTraining.from_pretrained("albert-base-v2") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.sop_logits
FlaxAlbertForMaskedLM
class transformers.FlaxAlbertForMaskedLM
( config: AlbertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
config
(AlbertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。dtype
(jax.numpy.dtype
, optional, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。
这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype
,则所有计算将使用给定的dtype
执行。请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
在顶部带有语言建模
头部的 Albert 模型。
此模型继承自 FlaxPreTrainedModel。检查超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。
此模型还是一个flax.linen.Module子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档以获取与一般用法和行为相关的所有事项。
最后,此模型支持内在的 JAX 功能,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxMaskedLMOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
)— 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:
- 1 表示
未被掩码
的标记, - 0 表示
被掩码
的标记。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
中:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。return_dict
(bool
,可选)— 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
时)包含根据配置(AlbertConfig)和输入而异的各种元素。
logits
(形状为(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
模型在每一层输出处的隐藏状态加上初始嵌入输出。attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的前向方法覆盖了__call__
特殊方法。
尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行前处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxAlbertForMaskedLM >>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2", revision="refs/pr/11") >>> model = FlaxAlbertForMaskedLM.from_pretrained("albert-base-v2", revision="refs/pr/11") >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax") >>> outputs = model(**inputs) >>> logits = outputs.logits
FlaxAlbertForSequenceClassification
class transformers.FlaxAlbertForSequenceClassification
( config: AlbertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
config
(AlbertConfig)- 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。dtype
(jax.numpy.dtype
,可选,默认为jax.numpy.float32
)- 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。
这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定,则所有计算将使用给定的dtype
执行。请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
Albert 模型变压器,顶部带有序列分类/回归头(池化输出顶部的线性层),例如用于 GLUE 任务。
此模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。
此模型还是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取与一般用法和行为相关的所有内容。
最后,此模型支持 JAX 的固有功能,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
)- 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
之间:
- 1 对应于未被掩码的标记,
- 对于被
masked
的标记,值为 0。
- 什么是注意力掩码?
token_type_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
之间:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。return_dict
(bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(AlbertConfig)和输入的不同元素。
logits
(jnp.ndarray
,形状为(batch_size, config.num_labels)
) — 分类(如果config.num_labels==1
则为回归)得分(在 SoftMax 之前)。hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
模型在每一层输出的隐藏状态加上初始嵌入输出。attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxAlbertForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2") >>> model = FlaxAlbertForSequenceClassification.from_pretrained("albert-base-v2") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") >>> outputs = model(**inputs) >>> logits = outputs.logits
FlaxAlbertForMultipleChoice
class transformers.FlaxAlbertForMultipleChoice
( config: AlbertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
config
(AlbertConfig)— 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。dtype
(jax.numpy.dtype
, optional, defaults tojax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。
这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype
,则所有计算将使用给定的数据类型执行。请注意,这仅指定了计算的数据类型,不影响模型参数的数据类型。
如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
Albert 模型,顶部带有多选分类头(顶部是汇总输出和 softmax 的线性层),例如用于 RocStories/SWAG 任务。
此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。
此模型还是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有事项。
最后,此模型支持 JAX 的固有功能,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, num_choices, sequence_length)
的numpy.ndarray
)— 词汇表中输入序列 token 的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 IDs?attention_mask
(形状为(batch_size, num_choices, sequence_length)
的numpy.ndarray
,可选)— 避免在填充 token 索引上执行注意力的掩码。掩码值选择在[0, 1]
中:
- 对于未被
masked
的 token,值为 1, - 对于被
masked
的 token,值为 0。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, num_choices, sequence_length)
的numpy.ndarray
,可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
中:
- 值为 0 表示句子 A的 token,
- 值为 1 表示句子 B的 token。
- 什么是 token type IDs?
position_ids
(numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
,可选的) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。return_dict
(bool
,可选的) — 是否返回一个 ModelOutput 而不是一个普通元组。
返回
transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或当config.return_dict=False
时)包含根据配置(AlbertConfig)和输入的各种元素。
logits
(jnp.ndarray
,形状为(batch_size, num_choices)
) — num_choices是输入张量的第二维度。(参见上面的input_ids)。
分类分数(SoftMax 之前)。hidden_states
(tuple(jnp.ndarray)
, 可选的, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
模型在每个层的输出以及初始嵌入输出的隐藏状态。attentions
(tuple(jnp.ndarray)
, 可选的, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。
在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。
FlaxAlbertPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxAlbertForMultipleChoice >>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2") >>> model = FlaxAlbertForMultipleChoice.from_pretrained("albert-base-v2") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True) >>> outputs = model(**{k: v[None, :] for k, v in encoding.items()}) >>> logits = outputs.logits
FlaxAlbertForTokenClassification
transformers.FlaxAlbertForTokenClassification
类
( config: AlbertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
config
(AlbertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。dtype
(jax.numpy.dtype
, 可选的, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。
这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype
执行。请注意,这仅指定了计算的数据类型,不影响模型参数的数据类型。
如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
在顶部带有标记分类头的 Albert 模型(隐藏状态输出顶部的线性层),例如用于命名实体识别(NER)任务。
此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。
此模型还是一个flax.linen.Module子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档以了解所有与一般用法和行为相关的事项。
最后,此模型支持内在的 JAX 功能,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxTokenClassifierOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
)— 词汇中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
输入 ID 是什么?attention_mask
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 用于避免在填充标记索引上执行注意力的蒙版。蒙版值选在[0, 1]
中:
- 1 对应于未被掩蔽的标记,
- 对于被
masked
的标记。
- 注意力蒙版是什么?
token_type_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 指示输入的第一部分和第二部分的段标记索引。索引选在[0, 1]
中:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。return_dict
(bool
,可选)— 是否返回一个 ModelOutput 而不是一个普通元组。
返回
transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
时)包含各种元素,具体取决于配置(AlbertConfig)和输入。
logits
(形状为(batch_size, sequence_length, config.num_labels)
的jnp.ndarray
)— 分类分数(SoftMax 之前)。hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
模型在每个层的输出以及初始嵌入输出的隐藏状态。attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的前向方法重写了 __call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxAlbertForTokenClassification >>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2") >>> model = FlaxAlbertForTokenClassification.from_pretrained("albert-base-v2") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") >>> outputs = model(**inputs) >>> logits = outputs.logits
FlaxAlbertForQuestionAnswering
class transformers.FlaxAlbertForQuestionAnswering
( config: AlbertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
config
(AlbertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。dtype
(jax.numpy.dtype
, optional, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
,jax.numpy.float16
(在 GPU 上), 和jax.numpy.bfloat16
(在 TPU 上) 中的一个。
这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype
执行。请注意,这只指定了计算的数据类型,不影响模型参数的数据类型。
如果您希望更改模型参数的数据类型,请参阅 to_fp16() 和 to_bf16()。
Albert 模型,顶部带有用于提取问答任务的跨度分类头,如 SQuAD(在隐藏状态输出顶部的线性层,用于计算 span start logits
和 span end logits
)。
这个模型继承自 FlaxPreTrainedModel。查看超类文档以了解库实现的通用方法,例如从 PyTorch 模型下载、保存和转换权重。
这个模型也是一个 flax.linen.Module 子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有事项。
最后,这个模型支持 JAX 的内在特性,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
)- 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
输入 ID 是什么?attention_mask
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 用于避免在填充标记索引上执行注意力的掩码。选择在[0, 1]
中的掩码值:
- 对于“未屏蔽”的标记,为 1,
- 对于“屏蔽”的标记为 0。
- 注意掩码是什么?
token_type_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 段令牌索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 令牌类型 ID 是什么?
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。return_dict
(bool
,可选)- 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(AlbertConfig)和输入的各种元素。
start_logits
(形状为(batch_size, sequence_length)
的jnp.ndarray
)- 跨度开始分数(SoftMax 之前)。end_logits
(形状为(batch_size, sequence_length)
的jnp.ndarray
)- 跨度结束分数(SoftMax 之前)。hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出+一个用于每个层的输出)。
模型在每一层输出的隐藏状态加上初始嵌入输出。attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxAlbertForQuestionAnswering >>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2") >>> model = FlaxAlbertForQuestionAnswering.from_pretrained("albert-base-v2") >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> inputs = tokenizer(question, text, return_tensors="jax") >>> outputs = model(**inputs) >>> start_scores = outputs.start_logits >>> end_scores = outputs.end_logits
`请注意,这只指定了计算的数据类型,不影响模型参数的数据类型。` 如果您希望更改模型参数的数据类型,请参阅 to_fp16() 和 to_bf16()。
Albert 模型,顶部带有用于提取问答任务的跨度分类头,如 SQuAD(在隐藏状态输出顶部的线性层,用于计算 span start logits
和 span end logits
)。
这个模型继承自 FlaxPreTrainedModel。查看超类文档以了解库实现的通用方法,例如从 PyTorch 模型下载、保存和转换权重。
这个模型也是一个 flax.linen.Module 子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有事项。
最后,这个模型支持 JAX 的内在特性,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
)- 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
输入 ID 是什么?attention_mask
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 用于避免在填充标记索引上执行注意力的掩码。选择在[0, 1]
中的掩码值:
- 对于“未屏蔽”的标记,为 1,
- 对于“屏蔽”的标记为 0。
- 注意掩码是什么?
token_type_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 段令牌索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 令牌类型 ID 是什么?
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。return_dict
(bool
,可选)- 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(AlbertConfig)和输入的各种元素。
start_logits
(形状为(batch_size, sequence_length)
的jnp.ndarray
)- 跨度开始分数(SoftMax 之前)。end_logits
(形状为(batch_size, sequence_length)
的jnp.ndarray
)- 跨度结束分数(SoftMax 之前)。hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出+一个用于每个层的输出)。
模型在每一层输出的隐藏状态加上初始嵌入输出。attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxAlbertForQuestionAnswering >>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2") >>> model = FlaxAlbertForQuestionAnswering.from_pretrained("albert-base-v2") >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> inputs = tokenizer(question, text, return_tensors="jax") >>> outputs = model(**inputs) >>> start_scores = outputs.start_logits >>> end_scores = outputs.end_logits