Transformers 4.37 中文文档(二十一)(1)

简介: Transformers 4.37 中文文档(二十一)


原文:huggingface.co/docs/transformers

BART

原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/bart

概述

Bart 模型是由 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad,  Abdelrahman Mohamed, Omer Levy, Ves Stoyanov 和 Luke Zettlemoyer 在 2019 年  10 月 29 日提出的,题为 BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension

根据摘要,

  • Bart 使用标准的 seq2seq/机器翻译架构,具有双向编码器(类似于 BERT)和从左到右的解码器(类似于 GPT)。
  • 预训练任务涉及随机打乱原始句子的顺序和一种新颖的填充方案,其中文本段被替换为单个掩码标记。
  • BART 在文本生成的微调时特别有效,但也适用于理解任务。它在 GLUE 和 SQuAD 上与 RoBERTa 的性能相匹配,实现了一系列抽象对话、问答和总结任务的最新成果,ROUGE 提升高达 6 个百分点。

这个模型是由sshleifer贡献的。作者的代码可以在这里找到。

使用提示:

  • BART 是一个具有绝对位置嵌入的模型,因此通常建议在右侧而不是左侧填充输入。
  • 具有编码器和解码器的序列到序列模型。编码器接收到被损坏版本的标记,解码器接收到原始标记(但有一个掩码来隐藏未来的单词,就像常规的 transformers 解码器)。以下转换的组合应用于编码器的预训练任务:
  • 掩盖随机标记(就像在 BERT 中)
  • 删除随机标记
  • 用单个掩码标记掩盖 k 个标记的范围(0 个标记的范围是插入一个掩码标记)
  • 排列句子
  • 旋转文档,使其从特定标记开始

实现注意事项

  • Bart 不使用 token_type_ids 进行序列分类。使用 BartTokenizer 或 encode() 来获得正确的分割。
  • BartModel 的前向传递将创建 decoder_input_ids,如果它们没有被传递。这与一些其他建模 API 不同。这个特性的一个典型用例是掩码填充。
  • forced_bos_token_id=0 时,模型预测应该与原始实现相同。然而,这仅在您传递给 fairseq.encode 的字符串以空格开头时才有效。
  • generate() 应该用于像总结这样的有条件生成任务,可以查看文档字符串中的示例。
  • 加载 facebook/bart-large-cnn 权重的模型将没有 mask_token_id,也无法执行掩码填充任务。

掩码填充

facebook/bart-basefacebook/bart-large 检查点可用于填充多个标记掩码。

from transformers import BartForConditionalGeneration, BartTokenizer
model = BartForConditionalGeneration.from_pretrained("facebook/bart-large", forced_bos_token_id=0)
tok = BartTokenizer.from_pretrained("facebook/bart-large")
example_english_phrase = "UN Chief Says There Is No <mask> in Syria"
batch = tok(example_english_phrase, return_tensors="pt")
generated_ids = model.generate(batch["input_ids"])
assert tok.batch_decode(generated_ids, skip_special_tokens=True) == [
    "UN Chief Says There Is No Plan to Stop Chemical Weapons in Syria"
]

资源

一个官方的 Hugging Face 和社区(由🌎表示)资源列表,可以帮助您开始使用 BART。如果您有兴趣提交一个资源以包含在这里,请随时打开一个 Pull Request,我们会进行审查!资源应该理想地展示一些新的东西,而不是重复现有的资源。

总结

填充-掩码

翻译

另请参阅:

  • 文本分类任务指南
  • 问答任务指南
  • 因果语言建模任务指南
  • 精简检查点 在这篇 论文 中有描述。

BartConfig

class transformers.BartConfig

< source >

( vocab_size = 50265 max_position_embeddings = 1024 encoder_layers = 12 encoder_ffn_dim = 4096 encoder_attention_heads = 16 decoder_layers = 12 decoder_ffn_dim = 4096 decoder_attention_heads = 16 encoder_layerdrop = 0.0 decoder_layerdrop = 0.0 activation_function = 'gelu' d_model = 1024 dropout = 0.1 attention_dropout = 0.0 activation_dropout = 0.0 init_std = 0.02 classifier_dropout = 0.0 scale_embedding = False use_cache = True num_labels = 3 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 is_encoder_decoder = True decoder_start_token_id = 2 forced_eos_token_id = 2 **kwargs )

参数

  • vocab_size (int, optional, defaults to 50265) — BART 模型的词汇表大小。定义了在调用 BartModel 或 TFBartModel 时可以由 inputs_ids 表示的不同标记数量。
  • d_model (int, optional, defaults to 1024) — 层和池化器层的维度。
  • encoder_layers (int, optional, defaults to 12) — 编码器层数。
  • decoder_layers (int, optional, defaults to 12) — 解码器层数。
  • encoder_attention_heads (int, optional, defaults to 16) — Transformer 编码器中每个注意力层的注意力头数。
  • decoder_attention_heads (int, optional, defaults to 16) — Transformer 解码器中每个注意力层的注意力头数。
  • decoder_ffn_dim (int, optional, defaults to 4096) — 解码器中“中间”(通常称为前馈)层的维度。
  • encoder_ffn_dim (int, optional, defaults to 4096) — 解码器中“中间”(通常称为前馈)层的维度。
  • activation_function (str or function, optional, defaults to "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持 "gelu", "relu", "silu""gelu_new"
  • dropout (float, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的丢弃概率。
  • attention_dropout (float, optional, defaults to 0.0) — 注意力概率的丢弃比率。
  • activation_dropout (float, optional, defaults to 0.0) — 全连接层内激活的丢弃比率。
  • classifier_dropout (float, optional, defaults to 0.0) — 分类器的丢弃比率。
  • max_position_embeddings (int, optional, defaults to 1024) — 此模型可能会使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512、1024 或 2048)。
  • init_std (float, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • encoder_layerdrop (float, optional, defaults to 0.0) — 编码器的 LayerDrop 概率。有关更多详细信息,请参阅 LayerDrop 论文)。
  • decoder_layerdrop (float, optional, defaults to 0.0) — 解码器的 LayerDrop 概率。有关更多详细信息,请参阅 LayerDrop paper)。
  • scale_embedding (bool, optional, defaults to False) — 通过将 d_model 除以 sqrt(d_model)来缩放嵌入。
  • use_cache (bool, optional, defaults to True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。
  • num_labels (int, optional, defaults to 3) — 在 BartForSequenceClassification 中使用的标签数。
  • forced_eos_token_id (int, optional, defaults to 2) — 当达到max_length时,强制作为最后生成的标记的标记 ID。通常设置为eos_token_id

这是用于存储 BartModel 配置的配置类。它用于根据指定的参数实例化 BART 模型,定义模型架构。使用默认值实例化配置将产生类似于 BART facebook/bart-large 架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

>>> from transformers import BartConfig, BartModel
>>> # Initializing a BART facebook/bart-large style configuration
>>> configuration = BartConfig()
>>> # Initializing a model (with random weights) from the facebook/bart-large style configuration
>>> model = BartModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config

BartTokenizer

class transformers.BartTokenizer

<来源>

( vocab_file merges_file errors = 'replace' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' add_prefix_space = False **kwargs )

参数

  • vocab_file (str) — 词汇文件的路径。
  • merges_file (str) — 合并文件的路径。
  • errors (str, optional, defaults to "replace") — 解码字节为 UTF-8 时要遵循的范例。有关更多信息,请参阅bytes.decode
  • bos_token (str, optional, defaults to "") — 在预训练期间使用的序列开始标记。可以用作序列分类器标记。
    在使用特殊标记构建序列时,这不是用于序列开头的标记。使用的标记是cls_token
  • eos_token (str, optional, defaults to "") — 序列结束标记。
    在使用特殊标记构建序列时,这不是用于序列结尾的标记。使用的标记是sep_token
  • sep_token (str, optional, defaults to "") — 分隔符标记,在从多个序列构建序列时使用,例如,用于序列分类的两个序列或用于文本和问题的问题回答。它也用作使用特殊标记构建的序列的最后一个标记。
  • cls_token (str, optional, defaults to "") — 在进行序列分类(整个序列的分类,而不是每个标记的分类)时使用的分类器标记。在使用特殊标记构建序列时,它是序列的第一个标记。
  • unk_token (str, optional, defaults to "") — 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。
  • pad_token (str, optional, defaults to "") — 用于填充的标记,例如在批处理不同长度的序列时。
  • mask_token (str, optional, defaults to "") — 用于屏蔽值的标记。在训练此模型时使用的标记为掩码语言建模。这是模型将尝试预测的标记。
  • add_prefix_space (bool, optional, 默认为False) — 是否在输入前添加一个初始空格。这允许将前导单词视为任何其他单词。(BART 分词器通过前面的空格检测单词的开头)。

构建一个 BART 分词器,它类似于 ROBERTa 分词器,使用字节级字节对编码。

此分词器已经训练成将空格视为标记的一部分(有点像 sentencepiece),因此一个单词将

在句子开头(没有空格)或不是时,将以不同方式编码:

>>> from transformers import BartTokenizer
>>> tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]

您可以通过在实例化此分词器时或在对某些文本调用它时传递add_prefix_space=True来避免这种行为,但由于模型不是以这种方式进行预训练的,因此可能会导致性能下降。

当与is_split_into_words=True一起使用时,此分词器将在每个单词之前添加一个空格(即使是第一个单词)。

此分词器继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

<来源>

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — 将添加特殊标记的 ID 列表。
  • token_ids_1 (List[int], optional) — 可选的第二个 ID 列表,用于序列对。

返回

List[int]

带有适当特殊标记的 input IDs 列表。

通过连接和添加特殊标记,为序列分类任务从序列或序列对构建模型输入。BART 序列的格式如下:

  • 单个序列: X
  • 序列对: A B
convert_tokens_to_string

<来源>

( tokens )

将一系列标记(字符串)转换为单个字符串。

create_token_type_ids_from_sequences

<来源>

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], optional) — 可选的第二个 ID 列表,用于序列对。

返回

List[int]

零列表。

从传递的两个序列中创建一个用于序列对分类任务的掩码。BART 不使用标记类型 ID,因此返回一个零列表。

get_special_tokens_mask

<来源>

( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], optional) — 可选的第二个 ID 列表,用于序列对。
  • already_has_special_tokens (bool, optional, 默认为False) — 标记列表是否已经格式化为模型的特殊标记。

返回

List[int]

一个整数列表,范围为[0, 1]:1 表示特殊标记,0 表示序列标记。

从没有添加特殊标记的标记列表中检索序列 ID。当使用分词器的prepare_for_model方法添加特殊标记时,将调用此方法。

BartTokenizerFast

class transformers.BartTokenizerFast

<来源>

( vocab_file = None merges_file = None tokenizer_file = None errors = 'replace' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' add_prefix_space = False trim_offsets = True **kwargs )

参数

  • vocab_file (str) — 词汇文件的路径。
  • merges_file (str) — 合并文件的路径。
  • errors (str, optional, 默认为"replace") — 解码字节为 UTF-8 时要遵循的范例。有关更多信息,请参阅bytes.decode
  • bos_tokenstr可选,默认为"")— 在预训练期间使用的序列开头标记。可用作序列分类器标记。
    构建序列时使用特殊标记时,并非用于序列开头的标记。使用的标记是cls_token
  • eos_tokenstr可选,默认为"")— 序列结尾标记。
    构建序列时使用特殊标记时,并非用于序列结尾的标记。使用的标记是sep_token
  • sep_tokenstr可选,默认为"")— 分隔符标记,用于从多个序列构建序列,例如用于序列分类的两个序列或用于问题回答的文本和问题。它还用作使用特殊标记构建的序列的最后一个标记。
  • cls_tokenstr可选,默认为"")— 用于进行序列分类时使用的分类器标记(对整个序列进行分类,而不是每个标记进行分类)。当使用特殊标记构建序列时,它是序列的第一个标记。
  • unk_tokenstr可选,默认为"")— 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。
  • pad_tokenstr可选,默认为"")— 用于填充的标记,例如在批处理不同长度的序列时。
  • mask_tokenstr可选,默认为"")— 用于屏蔽值的标记。这是在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。
  • add_prefix_spacebool可选,默认为False)— 是否在输入前添加一个空格。这允许将前导单词视为任何其他单词。(BART 标记器通过前面的空格检测单词的开头)。
  • trim_offsetsbool可选,默认为True)— 后处理步骤是否应修剪偏移量以避免包含空格。

构建一个“快速”BART 标记器(由 HuggingFace 的tokenizers库支持),派生自 GPT-2 标记器,使用字节级字节对编码。

此标记器已经训练成将空格视为标记的一部分(有点像 sentencepiece),因此一个单词将

编码方式不同,无论它是否位于句子开头(无空格)或不是:

>>> from transformers import BartTokenizerFast
>>> tokenizer = BartTokenizerFast.from_pretrained("facebook/bart-base")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]

您可以通过在实例化此标记器时或在对某些文本调用它时传递add_prefix_space=True来避免这种行为,但由于该模型不是以这种方式进行预训练的,因此可能会导致性能下降。

当与is_split_into_words=True一起使用时,此标记器需要使用add_prefix_space=True进行实例化。

此标记器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

create_token_type_ids_from_sequences

<来源>

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0List[int])— ID 列表。
  • token_ids_1List[int]可选)— 序列对的可选第二个 ID 列表。

返回值

List[int]

零的列表。

从传递的两个序列创建一个用于序列对分类任务的掩码。BART 不使用标记类型 ID,因此返回一个零的列表。

PytorchHide Pytorch 内容

BartModel

class transformers.BartModel

<来源>

( config: BartConfig )

参数

  • config (BartConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的 BART 模型输出原始隐藏状态,没有特定的头部。该模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

该模型还是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在 [0, 1] 之间:
  • 对于未被“掩码”的标记,值为 1。
  • 对于被“掩码”的标记,值为 0。
  • 什么是注意力掩码?
  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — 词汇表中解码器输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是解码器输入 ID?
    Bart 使用 eos_token_id 作为生成 decoder_input_ids 的起始标记。如果使用了 past_key_values,则只需选择最后的 decoder_input_ids 输入(请参阅 past_key_values)。
    对于翻译和摘要训练,应提供 decoder_input_ids。如果未提供 decoder_input_ids,模型将通过将 input_ids 向右移动来创建此张量,以便进行去噪预训练,遵循论文中的方法。
  • decoder_attention_mask (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — 默认行为:生成一个忽略 decoder_input_ids 中填充标记的张量。因果掩码也将默认使用。
    如果要更改填充行为,应阅读 modeling_bart._prepare_decoder_attention_mask 并根据需要进行修改。有关默认策略的更多信息,请参阅 论文 中的图表 1。
  • head_mask (torch.Tensor of shape (encoder_layers, encoder_attention_heads), optional) — 用于使编码器中注意力模块的选定头部失效的掩码。掩码值选择在 [0, 1] 之间:
  • 1 表示头部未被“掩码”。
  • 0 表示头部被“掩码”。
  • decoder_head_mask(形状为(decoder_layers, decoder_attention_heads)torch.Tensor可选)- 用于使解码器中注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]中:
  • 1 表示头部未被掩盖,
  • 0 表示头部被掩盖。
  • cross_attn_head_mask(形状为(decoder_layers, decoder_attention_heads)torch.Tensor可选)- 用于使解码器中交叉注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]中:
  • 1 表示头部未被掩盖,
  • 0 表示头部被掩盖。
  • encoder_outputstuple(tuple(torch.FloatTensor)可选)- 元组包括(last_hidden_state可选hidden_states可选attentionslast_hidden_state的形状为(batch_size, sequence_length, hidden_size)可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。
  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)- 长度为config.n_layerstuple(torch.FloatTensor)的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。
    如果使用了past_key_values,用户可以选择仅输入最后的decoder_input_ids(那些没有将其过去的键值状态提供给此模型的)的形状为(batch_size, 1),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)- 可选地,您可以选择直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • decoder_inputs_embeds(形状为(batch_size, target_sequence_length, hidden_size)torch.FloatTensor可选)- 可选地,您可以选择直接传递嵌入表示而不是传递decoder_input_ids。如果使用了past_key_values,则只有最后的decoder_inputs_embeds需要输入(参见past_key_values)。如果您想要更多控制如何将decoder_input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
    如果decoder_input_idsdecoder_inputs_embeds都未设置,则decoder_inputs_embedsinputs_embeds的值。
  • use_cachebool可选)- 如果设置为True,将返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。
  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dictbool可选)- 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_outputs.Seq2SeqModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包括根据配置(BartConfig)和输入的不同元素。

  • last_hidden_state(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor)—模型解码器最后一层的隐藏状态序列的输出。
    如果使用past_key_values,则只输出形状为(batch_size, 1, hidden_size)的序列的最后一个隐藏状态。
  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)—长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。
  • decoder_hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)—形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的一个,加上每层的一个)。
    解码器每层输出的隐藏状态以及可选的初始嵌入输出。
  • decoder_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)—形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • cross_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)—形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
  • encoder_last_hidden_state(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)—模型编码器最后一层的隐藏状态序列的输出。
  • encoder_hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)—形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的一个,加上每层的一个)。
    编码器每层输出的隐藏状态以及可选的初始嵌入输出。
  • encoder_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)—形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

BartModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个函数,因为前者会负责运行前处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, BartModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = BartModel.from_pretrained("facebook/bart-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state

BartForConditionalGeneration

class transformers.BartForConditionalGeneration

<来源>

( config: BartConfig )

参数

  • config(BartConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

具有语言建模头的 BART 模型。可用于摘要。此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 输入序列标记在词汇表中的索引。默认情况下会忽略填充。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入标记?
  • attention_mask(形状为(batch_size, sequence_length)torch.Tensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
  • 1 用于“未掩码”的标记,
  • 0 用于“掩码”标记的标记。
  • 什么是注意力掩码?
  • decoder_input_ids(形状为(batch_size, target_sequence_length)torch.LongTensor可选)— 解码器输入序列标记在词汇表中的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是解码器输入标记?
    Bart 使用eos_token_id作为decoder_input_ids生成的起始标记。如果使用past_key_values,则可选择仅输入最后的decoder_input_ids(参见past_key_values)。
    对于翻译和摘要训练,应提供decoder_input_ids。如果未提供decoder_input_ids,模型将通过将input_ids向右移动来创建此张量,以用于去噪预训练,遵循论文中的方法。
  • decoder_attention_mask(形状为(batch_size, target_sequence_length)torch.LongTensor可选)— 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。默认还将使用因果掩码。
    如果要更改填充行为,您应该阅读modeling_bart._prepare_decoder_attention_mask并根据您的需求进行修改。有关默认策略的更多信息,请参见论文中的图表 1。
  • head_mask (torch.Tensor of shape (encoder_layers, encoder_attention_heads), optional) — 用于将编码器中注意力模块的选定头部置零的掩码。掩码值选定在[0, 1]中:
  • 1 表示头部未被掩盖,
  • 0 表示头部被掩盖。
  • decoder_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于将解码器中注意力模块的选定头部置零的掩码。掩码值选定在[0, 1]中:
  • 1 表示头部未被掩盖,
  • 0 表示头部被掩盖。
  • cross_attn_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于将解码器中交叉注意力模块的选定头部置零的掩码。掩码值选定在[0, 1]中:
  • 1 表示头部未被掩盖,
  • 0 表示头部被掩盖。
  • encoder_outputs (tuple(tuple(torch.FloatTensor), optional) — 元组包括(last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state的形状为(batch_size, sequence_length, hidden_size)optional)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(请参见past_key_values输入)。
    如果使用了past_key_values,用户可以选择仅输入最后一个形状为(batch_size, 1)decoder_input_ids(即那些没有将其过去的键值状态提供给此模型的输入)而不是所有形状为(batch_size, sequence_length)decoder_input_ids
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示而不是传递decoder_input_ids。如果使用了past_key_values,则可以选择仅输入最后一个decoder_inputs_embeds(请参见past_key_values)。如果您想要更多控制如何将decoder_input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
    如果decoder_input_idsdecoder_inputs_embeds都未设置,则decoder_inputs_embedsinputs_embeds的值。
  • use_cache (bool, optional) — 如果设置为True,则返回past_key_values键值状态,并可用于加速解码(请参见past_key_values)。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), 可选) — 用于计算掩码语言建模损失的标签。索引应该在[0, ..., config.vocab_size]范围内,或者为-100(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]范围内的标记。

返回

transformers.modeling_outputs.Seq2SeqLMOutput 或tuple(torch.FloatTensor)

transformers.modeling_outputs.Seq2SeqLMOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(BartConfig)和输入的各种元素。

  • loss (torch.FloatTensor of shape (1,), 可选, 当提供labels时返回) — 语言建模损失。
  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,以及 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。
  • decoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每个层的输出)。
    解码器在每个层的输出以及初始嵌入输出的隐藏状态。
  • decoder_attentions (tuple(torch.FloatTensor), 可选, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
  • encoder_last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), 可选) — 模型编码器最后一层的隐藏状态序列。
  • encoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每个层的输出)。
    编码器每层输出的隐藏状态加上初始嵌入输出。
  • encoder_attentions (tuple(torch.FloatTensor), optional, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每层一个)。
    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

BartForConditionalGeneration 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module 实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

摘要示例:

>>> from transformers import AutoTokenizer, BartForConditionalGeneration
>>> model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> ARTICLE_TO_SUMMARIZE = (
...     "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
...     "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
...     "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
... )
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="pt")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=0, max_length=20)
>>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'PG&E scheduled the blackouts in response to forecasts for high winds amid dry conditions'

填充掩码示例:

>>> from transformers import AutoTokenizer, BartForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
['not', 'good', 'healthy', 'great', 'very']


Transformers 4.37 中文文档(二十一)(2)https://developer.aliyun.com/article/1563808

相关文章
|
4月前
|
缓存 异构计算 索引
Transformers 4.37 中文文档(二十一)(5)
Transformers 4.37 中文文档(二十一)
27 0
|
4月前
|
PyTorch 测试技术 TensorFlow
Transformers 4.37 中文文档(二十一)(2)
Transformers 4.37 中文文档(二十一)
30 0
|
4月前
|
PyTorch 测试技术 TensorFlow
Transformers 4.37 中文文档(二十一)(3)
Transformers 4.37 中文文档(二十一)
30 0
|
4月前
|
缓存 异构计算 索引
Transformers 4.37 中文文档(二十一)(4)
Transformers 4.37 中文文档(二十一)
30 0
|
4月前
|
算法 API 调度
Transformers 4.37 中文文档(十九)(6)
Transformers 4.37 中文文档(十九)
75 2
|
4月前
|
存储 PyTorch 算法框架/工具
Transformers 4.37 中文文档(十九)(4)
Transformers 4.37 中文文档(十九)
265 2
|
4月前
|
存储 PyTorch 网络安全
Transformers 4.37 中文文档(十九)(5)
Transformers 4.37 中文文档(十九)
88 2
|
4月前
|
存储 机器学习/深度学习 异构计算
Transformers 4.37 中文文档(十九)(8)
Transformers 4.37 中文文档(十九)
171 2
|
4月前
|
存储 PyTorch 算法框架/工具
Transformers 4.37 中文文档(十九)(3)
Transformers 4.37 中文文档(十九)
43 1
|
4月前
|
并行计算 PyTorch 调度
Transformers 4.37 中文文档(十九)(1)
Transformers 4.37 中文文档(十九)
109 1