Flask实现内部接口----pycharm安装及新建,location代表着文件路径,下面是Python的环境,Flask是由Python开发的框架,Python文件接口ython通过GET发送

简介: Flask实现内部接口----pycharm安装及新建,location代表着文件路径,下面是Python的环境,Flask是由Python开发的框架,Python文件接口ython通过GET发送

Flask实现内部接口-pycharm安装及新建项目_哔哩哔哩_bilibili

使用Python Flask实现识别接口

第一步,先安装PyCharm

第二步,下载PyCharm

第三步,选择

第四步

第五步 打印一下Python文件,这里有一个main.py文件

def print_hi(name):
    print(f'Hi',{name})
 
if __name__ == '__main__':
    print_hi('PyCharm')

第六步 打开Pycharm,新建一个Python文件

第七步 叫lean_flask

import logging
from flask import Flask
 
def init_log():
    # 设置打印到控制台的格式和等级
    logging.basicConfig(format='%(asctime)s %(filename)s %(levelname)s %(message)s', datefmt='%a %d %b %Y %H:%M:%S',
                        level=logging.INFO)
    # 设置输出到的文件和编码
    file_handler = logging.FileHandler("ocr.log", encoding="utf-8")
    # 设置输出等级
    file_handler.setLevel(logging.INFO)
    # 设置输出到文件的日志格式
    file_handler.setFormatter(logging.Formatter('%(asctime)s %(filename)s %(levelname)s %(message)s'))
    logger = logging.getLogger()
    logger.handlers.append(file_handler)
 
app = Flask(__name__)
@app.route("/learn/hello")
def hello_world():
    return "Hello,world!"
 
if __name__ == '__main__':
    app.run(host='0.0.0.0',debug=True,port=8888)

第八步 用小写字母,有多个字母用下划线之间隔开,

第九步 import logging,引入日志模块

第十步 设置打印日志的函数和基础格式

第十一步 可以设置时间,文件名称,日志等级,日志内容,时间

第十二步 各个含义

第十三步 指定打印文件和编码

第十四步 解决乱码问题,用handler

第十五步 使用 flask之前先声明

pip install flask==3.0.0

第十六步添加路由

第十七步,debug代表着重启服务器,port代表着8888

第十八步 服务器成功启动了

import logging
 
import requests
from flask import Flask
 
def init_log():
    # 设置打印到控制台的格式和等级
    logging.basicConfig(format='%(asctime)s %(filename)s %(levelname)s %(message)s', datefmt='%a %d %b %Y %H:%M:%S',
                        level=logging.INFO)
    # 设置输出到的文件和编码
    file_handler = logging.FileHandler("ocr.log", encoding="utf-8")
    # 设置输出等级
    file_handler.setLevel(logging.INFO)
    # 设置输出到文件的日志格式
    file_handler.setFormatter(logging.Formatter('%(asctime)s %(filename)s %(levelname)s %(message)s'))
    logger = logging.getLogger()
    logger.handlers.append(file_handler)
 
init_log()
app = Flask(__name__)
@app.route("/learn/hello")
def hello_world():
    return "Hello,world!"
@app.route("/learn/path/<string:name>")
def lean_path(name):
    return name
@app.route("/learn/m-get",methods=["GET"])
def learn_get_method():
    age = requests.args.get("age")
    name = requests.args.get("name")
    logging.info("learn m-get age 是: %s ,name是: %s",age,name)
    return "SUCCESS",200
if __name__ == '__main__':
    app.run(host='0.0.0.0',debug=True,port=8888)
 

第十九步 利用POSTMAN可以对接口进行测试,打开他,点击send发送一下请求,可以检查接口:

第二十步 接口怎样写,可以看到HelloWorld了,已经返回成功了

第二十一步,默认是字符串类型

第二十二步,路径要以/开头

第二十四 这里先要用import 引入文件

第二十五 先用flask.request这个

第二十六步 通过args.get方法,我们可以获取到值

第二十七步给他写一个状态码

第二十八 调用函数

第二十九步 添加POSTMAN接口

第三十步,我们再调用另一个接口

第三十一步,这里我们发现已经调用成功了

第三十二步 日志的格式

第三十三步,通过POST方式来获取数据,通过JSON模块去实现一下

第三十四 通过JSON格式

第三十五

第三十六步 用loads方法,返回一下数据

第三十七步 发送一下请求

第三十八步 jsonify

第三十九步 up主写错了,这里要改成name

import json
import logging
 
import requests
from flask import Flask, request, jsonify
 
 
def init_log():
    # 设置打印到控制台的格式和等级
    logging.basicConfig(format='%(asctime)s %(filename)s %(levelname)s %(message)s', datefmt='%a %d %b %Y %H:%M:%S',
                        level=logging.INFO)
    # 设置输出到的文件和编码
    file_handler = logging.FileHandler("ocr.log", encoding="utf-8")
    # 设置输出等级
    file_handler.setLevel(logging.INFO)
    # 设置输出到文件的日志格式
    file_handler.setFormatter(logging.Formatter('%(asctime)s %(filename)s %(levelname)s %(message)s'))
    logger = logging.getLogger()
    logger.handlers.append(file_handler)
 
 
init_log()
 
app = Flask(__name__)
@app.route("/learn/hello")
def hello_world():
    return "Hello,world!"
@app.route("/learn/path/<string:name>")
def lean_path(name):
    return name
@app.route("/learn/m-get",methods=["GET"])
def learn_get_method():
    age = request.args.get("age")
    name = request.args.get("name")
    logging.info("learn m-get age 是: %s ,name是: %s",age,name)
    return "SUCCESS",200
@app.route("/learn/m-post",methods=["POST"])
def learn_post_method():
    data = request.data
    logging.info("learn post-m data : %s",data)
    data = json.loads(data)
    age = data["age"]
    name = data["name"]
    logging.info("learn post-m age:%s name:%s",age,name)
    return jsonify(data),200
if __name__ == '__main__':
    app.run(host='0.0.0.0',debug=True,port=8888)
 

第40步 最后得到数据


相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
相关文章
|
2月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
348 0
|
2月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
278 0
|
2月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
445 0
|
2月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
188 0
|
3月前
|
设计模式 人工智能 API
AI智能体开发实战:17种核心架构模式详解与Python代码实现
本文系统解析17种智能体架构设计模式,涵盖多智能体协作、思维树、反思优化与工具调用等核心范式,结合LangChain与LangGraph实现代码工作流,并通过真实案例验证效果,助力构建高效AI系统。
509 7
|
3月前
|
机器学习/深度学习 算法 PyTorch
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
180 0
|
JSON 前端开发 API
使用Python和Flask构建简易Web API
使用Python和Flask构建简易Web API
696 86
|
JSON API 数据格式
使用Python和Flask构建简单的Web API
使用Python和Flask构建简单的Web API
|
开发框架 前端开发 JavaScript
利用Python和Flask构建轻量级Web应用的实战指南
利用Python和Flask构建轻量级Web应用的实战指南
747 2
|
JSON API 数据格式
如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架
本文介绍了如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架,适合小型项目和微服务。文章从环境准备、创建基本Flask应用、定义资源和路由、请求和响应处理、错误处理等方面进行了详细说明,并提供了示例代码。通过这些步骤,读者可以快速上手构建自己的RESTful API。
674 2

推荐镜像

更多