人工智能之人脸识别技术应用场景

简介: 人脸识别技术是一种通过计算机技术和模式识别算法来识别和验证人脸的技术。它可以用于识别人脸的身份、检测人脸的表情、年龄、性别等特征,以及进行人脸比对和活体检测等应用。

人脸识别介绍

什么是人脸识别技术

人脸识别技术是一种通过计算机技术和模式识别算法来识别和验证人脸的技术。它可以用于识别人脸的身份、检测人脸的表情、年龄、性别等特征,以及进行人脸比对和活体检测等应用。

人脸识别的流程

人脸检测:通过图像或视频中的像素信息,检测出图像中的人脸区域,并将其与其他物体进行区分。

人脸对齐:将检测到的人脸区域进行对齐,以确保在后续的特征提取和匹配过程中具有一致的标准。

特征提取:从对齐后的人脸图像中提取出具有代表性的特征向量,通常使用的是基于机器学习或深度学习的特征提取方法。

特征匹配:将提取的特征向量与已知的人脸特征进行比对,以确定其身份或与其他人脸的相似度。

身份验证/识别:根据特征匹配的结果,进行身份验证或识别。身份验证是将待识别的人脸与已知的身份进行比对,确定其是否为指定的身份;而识别是将待识别的人脸与已知的人脸库中的多个身份进行比对,确定其最有可能的身份。

随着人工智能技术的飞速发展,人脸识别在人脸识别、人脸验证、人证对比、人脸美化编辑等四个方面应用非常的广泛。

1、场景分类

人脸识别:安防监控识别、人脸门禁、明星脸、VIP身份识别等等

人证对比:金融领域身份认证、考勤打卡、登机安检、考试身份认证等等

人脸编辑:人脸美化、人脸贴纸等特效等等

人脸验证:刷脸支付、找回密码、通过人脸安全登录系统等等

人脸编辑

随着短视频、直播的流行,人像美化技术现在越来月成熟,现在可以通过人脸美化、编辑把人脸的关键点检测出来,然后进行放大眼睛、美白皮肤、瘦脸等操作,还可以增加一些贴纸效果。让从事直播、短视频的朋友变得更加赏心悦目。

2、认证对比

认证对比主要是把人脸图像和身份证上的信息进行对比,来验证人脸图像是否身份证上的本人。

这种业务系统的流程一般都是先在业务系统对人脸、个人证件的采集,然后在登陆系统、支付场景等使用前端图像和服务器上的图像进行对比,来验证身份。

3、金融领保险应用

3.1 金融行业

在互联网金融行业当中,可以通过人脸的识别来针对客户开展办卡业务。简单流程如下:

通过文字、语音引导告知客户正确的操作方法→捕捉人脸(捕捉清晰的正脸)→活体验证(验证是否是真实操作的人)→照片对比(照片和身份证对比)→完成(完整认证)

3.2 保险行业

通过人脸识别可以有效缩减办理流程从而节约时间成本(省去去带身份证、户口本等麻烦)、缩减流程。另外目前人脸识别技术很成熟了所以安全性更高,身份认证可以达到准确无误。

4、安防交通领域

4.1 公园景点人脸识别闸机

有了人脸识别技术实现了公园景点的门禁智能化管理,方便了景点入园的管理,也大大提高了进入景点认证效率和提升了游客体验。

4.2 高铁站进站人脸识别闸机

目前高铁进站基本都是采用了非常精准的刷脸进站人脸识别技术。一般都是闸机终端上方有一个摄像头,下方有身份证读取器,扫描人脸和放置身份证的时候进行验证,从而实现验证快速进站的目的,识别准确率非常高,即使化妆也可以正确识别出来。

5、警务领域

5.1 抓拍交通违法

目前大部分城市都启动了人脸抓拍系统,比如红灯亮起的时候,如果有人扔越过停止线,系统就会自动抓拍四张图片和保留15秒视频。最后数据会和公安系统的信息平台打通,可以自动识别出违反交通规则人的身份信息。

相关文章
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
44 0
|
24天前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
31 0
|
15天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
10天前
|
数据采集 人工智能 移动开发
盘点人工智能在医疗诊断领域的应用
人工智能在医疗诊断领域的应用广泛,包括医学影像诊断、疾病预测与风险评估、病理诊断、药物研发、医疗机器人、远程医疗诊断和智能辅助诊断系统等。这些应用提高了诊断的准确性和效率,改善了患者的治疗效果和生活质量。然而,数据质量和安全性、AI系统的透明度等问题仍需关注和解决。
131 10
|
17天前
|
机器学习/深度学习 人工智能 算法
探索人工智能在医疗诊断中的应用
本文深入探讨了人工智能(AI)技术在医疗诊断领域的革新性应用,通过分析AI如何助力提高诊断准确性、效率以及个性化治疗方案的制定,揭示了AI技术为现代医学带来的巨大潜力和挑战。文章还展望了AI在未来医疗中的发展趋势,强调了跨学科合作的重要性。 ###
66 9
|
20天前
|
机器学习/深度学习 数据采集 人工智能
深度探索:人工智能在医疗影像诊断中的应用与挑战####
本文旨在深入剖析人工智能(AI)技术在医疗影像诊断领域的最新进展、核心优势、面临的挑战及未来发展趋势。通过综合分析当前AI算法在提高诊断准确性、效率及可解释性方面的贡献,结合具体案例,揭示其在临床实践中的实际价值与潜在局限。文章还展望了AI如何与其他先进技术融合,以推动医疗影像学迈向更高层次的智能化时代。 ####
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
探索未来编程:Python在人工智能领域的深度应用与前景###
本文将深入探讨Python语言在人工智能(AI)领域的广泛应用,从基础原理到前沿实践,揭示其如何成为推动AI技术创新的关键力量。通过分析Python的简洁性、灵活性以及丰富的库支持,展现其在机器学习、深度学习、自然语言处理等子领域的卓越贡献,并展望Python在未来AI发展中的核心地位与潜在变革。 ###
|
23天前
|
机器学习/深度学习 数据采集 人工智能
探索人工智能在医疗诊断中的应用与挑战
随着人工智能技术的飞速发展,其在医疗领域的应用日益广泛,尤其是在疾病诊断方面展现出巨大的潜力。本文将深入探讨AI技术在医疗诊断中的应用现状、面临的挑战以及未来的发展趋势,旨在为相关领域的研究者和从业者提供参考和启示。
48 2
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
深入探讨人工智能中的深度学习技术##
在本文中,我们将深入探讨深度学习技术的原理、应用以及未来的发展趋势。通过分析神经网络的基本结构和工作原理,揭示深度学习如何在图像识别、自然语言处理等领域取得突破性进展。同时,我们还将讨论当前面临的挑战和未来的研究方向,为读者提供全面的技术洞察。 ##