技术心得:对数周期幂率模型(LPPL)

简介: 技术心得:对数周期幂率模型(LPPL)

什么是对数周期幂率模型


对数周期性幂律模型由Johansen和Sornette提出。Johansen-Ledoit-Sornette(JLS)模型假设存在两类交易者:理性的基本面交易者和非理性的噪音交易者。JLS模型借鉴统计物理中解释铁磁相变的Ising模型。该模型在JLS模型的基础上发展而来,交易者之间相互模仿,可作出买和卖的决策。由于这些相互作用,交易者间会形成相似交易行为的群体,这将导致泡沫的形成,也就是市场变得“有序”(不同于正常市场的“无序”状态,也就是熵比较大的市场)。该模型中另外一个重要的特点是在交易者的相互作用和风险的增加之间引入了正反馈,使得泡沫得以维持。


正是基于交易者之间的相互模仿,这些局部相互作用可形成正反馈,从而导致泡沫和反泡沫的产生,因此该模型可用于金融泡沫和反//代码效果参考:http://www.lyjsj.net.cn/wz/art_23512.html

泡沫的建模和预测。

对数周期幂率模型可简单表示为:


ln【p(t)】=A+B(tc?t)β+C(tc?t)βcos【ωln(tc?t)+?】ln【p(t)】=A+B(tc?t)β+C(tc?t)βcos【ωln(tc?t)+?】ln【p(t)】=A+B(t_c-t)^{\beta}+C(t_c-t)^{\beta}//代码效果参考:http://www.lyjsj.net.cn/wz/art_23510.html

cos【\omega ln(t_c-t)+\phi】

其中p(t)p(t)p(t)为ttt时刻价格,tctct_c为临界时间,A=ln【p(tc)】A=ln【p(tc)】A=ln【p(t_c)】,ββ\beta为幂数,取值范围为(0,1),ωω\omega为波动频率,取值范围为(2,15),\phi为相位。


对数周期幂率模型的特征


一是对数周期性振荡,在线性尺度下,越接近临界时间,振荡频率越快,但在对数尺度下,振荡频率为常数;


二是幂律增长,或称超指数增长,即价格的增长率不是常数,而是单调递增。


对数周期幂率模型的缺点


没有考虑政策等基本面因素。


估计参数很多,容易陷入局域最优点,不太适合数据量小的情形。


计算方法


使用遗传算法,第一步先估计四个非线性参数tc,β,ω,?tc,β,ω,?t_c,\beta,\omega,\phi,第二步再计算三个线性参数A,B,CA,B,CA,B,C,最后残差平方和作为优化目标函数。


详细过程可参照:Everything You Always Wanted to Know about Log Periodic Power Laws for Bubble Modelling but Were Afraid to Ask。


图1:LPPL拟合2007年上证综指示意图。

相关文章
|
9月前
|
数据可视化 Python
Matlab正态分布、历史模拟法、加权移动平均线 EWMA估计风险价值VaR和回测标准普尔指数 S&P500时间序列
Matlab正态分布、历史模拟法、加权移动平均线 EWMA估计风险价值VaR和回测标准普尔指数 S&P500时间序列
136 11
|
9月前
|
存储 数据挖掘
R语言用GARCH模型波动率建模和预测、回测风险价值 (VaR)分析股市收益率时间序列
R语言用GARCH模型波动率建模和预测、回测风险价值 (VaR)分析股市收益率时间序列
|
9月前
|
数据挖掘 数据建模
R语言指数加权模型EWMA预测股市多变量波动率
R语言指数加权模型EWMA预测股市多变量波动率
R语言指数加权模型EWMA预测股市多变量波动率
|
9月前
|
算法 vr&ar Python
R语言隐马尔可夫模型HMM连续序列重要性重抽样CSIR估计随机波动率模型SV分析股票收益率时间序列
R语言隐马尔可夫模型HMM连续序列重要性重抽样CSIR估计随机波动率模型SV分析股票收益率时间序列
|
9月前
|
存储 iOS开发 流计算
R语言使用Bass模型进行手机市场产品周期预测
R语言使用Bass模型进行手机市场产品周期预测
|
9月前
|
资源调度 数据建模 测试技术
R语言乘法GARCH模型对高频交易数据进行波动性预测
R语言乘法GARCH模型对高频交易数据进行波动性预测
|
9月前
|
算法 测试技术
R语言基于Garch波动率预测的区制转移交易策略
R语言基于Garch波动率预测的区制转移交易策略
|
9月前
|
数据可视化
R语言马科维茨Markowitz均值-方差(风险投资模型)分析最优投资组合数据预期收益率可视化(下)
R语言马科维茨Markowitz均值-方差(风险投资模型)分析最优投资组合数据预期收益率可视化(下)
|
9月前
|
存储 数据可视化 数据挖掘
R语言马科维茨Markowitz均值-方差(风险投资模型)分析最优投资组合数据预期收益率可视化(上)
R语言马科维茨Markowitz均值-方差(风险投资模型)分析最优投资组合数据预期收益率可视化
|
9月前
|
安全 vr&ar
R语言非线性动态回归模型ARIMAX、随机、确定性趋势时间序列预测个人消费和收入、用电量、国际游客数量
R语言非线性动态回归模型ARIMAX、随机、确定性趋势时间序列预测个人消费和收入、用电量、国际游客数量