MySQL 索引优化:深入探索自适应哈希索引的奥秘

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: MySQL 索引优化:深入探索自适应哈希索引的奥秘

前言

在 MySQL 中,索引是用来加速数据检索速度的一种数据结构。通常我们最熟悉的是 B-tree 索引,但 MySQL 的 InnoDB 存储引擎还提供了其他类型的索引,包括自适应哈希索引。

一、什么是自适应hash索引

先来回顾下什么是hash索引

1.1 哈希索引(Hash Index)

哈希索引基于哈希表实现,它将索引键值通过哈希函数转换为一个位置,然后在该位置存储相应的数据或数据指针。由于哈希索引可以几乎在 O(1) 时间复杂度内完成查找操作,因此在某些场景下它比 B-tree 索引更快。

哈希索引有几个显著的缺点:

  • 它不支持范围查询,因为哈希索引不存储数据的物理顺序信息。
  • 哈希索引不支持部分键匹配查询和排序操作。
  • 当哈希冲突较多时,性能会下降。
  • 哈希索引的构建和维护通常需要额外的内存开销。

在 MySQL 中,InnoDB 存储引擎并不直接支持用户创建的哈希索引。但是,InnoDB 使用哈希索引作为其内部数据结构的一部分,例如用于加速某些类型的查找。

1.2 自适应哈希索引(Adaptive Hash Index,AHI)

自适应哈希索引是 InnoDB 存储引擎特有的一个功能,它是为了优化某些热点数据的查询性能而自动构建的。自适应哈希索引不同于传统的哈希索引,因为它是自动和动态的:InnoDB 会根据查询模式和数据访问频率自动决定是否构建哈希索引,并且会根据数据的变化和查询模式的变化动态地调整哈希索引。


自适应哈希索引的工作原理是,当 InnoDB 注意到某些索引值被频繁地以等值查询的方式访问时,它会在内存中为这些值建立哈希索引,从而加速后续的等值查询。这个过程是自动的,不需要用户干预。

1.2.1 自适应哈希索引的优点
  • 自动优化:自适应哈希索引会自动构建和维护,不需要用户显式创建或管理。
  • 性能提升:对于某些等值查询,自适应哈希索引可以显著减少查找时间,哈希索引,查询消耗 O(1)
  • 降低对二级索引树的频繁访问资源。
1.2.2 自适应哈希索引也有一些限制和考虑因素
  • 内存消耗: 自适应哈希索引完全在内存中构建,因此需要足够的内存资源。在高负载下,它可能会消耗大量的内存。
  • 不可预测性:由于是基于运行时查询模式的,所以哈希索引的存在和组成是不可预测的。
  • 不适用于所有查询:自适应哈希索引主要优化等值查询,对于范围查询或排序操作没有帮助。
  • hash自适应索引会占用innodb buffer pool;

总的来说,自适应哈希索引是 InnoDB 存储引擎为了提高特定类型查询性能而自动构建的一种内存中的哈希索引结构。它可以根据查询模式和数据访问频率自动调整,以优化数据库的性能。

二、自适应哈希索引的工作原理

自适应哈希索引是 InnoDB 存储引擎内部实现的一种特殊索引结构,它是基于内存中的哈希表构建的。与传统的 B-tree 索引不同,哈希索引使用哈希函数将索引键值映射到哈希表中,从而实现了 O(1) 时间复杂度的快速查找。这意味着在等值查询场景下,自适应哈希索引能够提供比 B-tree 索引更快的查找速度。


自适应散列索引(AHI)使InnoDB在系统上执行更像内存数据库,该功能由innodb_adaptive_hash_index 配置启用。


Innodb存储引擎会监控对表上二级索引的查找,如果发现某二级索引被频繁访问,innodb就会使用索引键的前缀建立一个哈希索引。将索引值转换为一种指针,便于直接访问,带来速度的提升。


经常访问的二级索引数据会自动被生成到hash索引里面去(最近连续被访问三次的数据),自适应哈希索引通过缓冲池的B+树构造而来,因此建立的速度很快。

然而,哈希索引并不适用于所有查询场景。由于哈希索引不存储数据的物理顺序信息,因此它无法支持范围查询和排序操作。

此外,哈希索引的构建和维护需要额外的内存开销。为了平衡性能和资源消耗,InnoDB 存储引擎会根据查询模式和数据访问频率动态地构建和维护自适应哈希索引。

三、自适应哈希索引的使用场景

自适应哈希索引主要适用于以下场景:

  • 等值查询频繁: 如果某个列的值经常被用作等值查询的条件,并且查询频率较高,那么 InnoDB 存储引擎可能会为该列的值构建自适应哈希索引。
  • 热点数据访问: 对于经常被访问的热点数据,自适应哈希索引能够提供更快的查找速度,从而提高查询性能。
  • 内存资源充足: 由于自适应哈希索引是基于内存构建的,因此需要足够的内存资源来支持其构建和维护在 InnoDB 存储引擎中,自适应哈希索引(Adaptive Hash Index, AHI)是一种为了提高某些查询性能而自动构建的内存中的哈希索引。但是,InnoDB 不会为每一个可能的索引值都构建哈希索引,而是基于一定的条件和阈值来决定是否构建。


以下这些条件,实际上是 InnoDB 内部用来决定是否为一个特定的索引值构建自适应哈希索引的启发式规则的一部分。可能会随着 MySQL 版本的不同而有所变化,且它们是基于 InnoDB 开发者的经验和性能测试来设定的。

  • 索引使用次数: 当一个特定的索引值被查询多次时,InnoDB 会认为这个值是一个“热点”数据,值得为其构建哈希索引。通常,这个次数会有一个阈值,例如17次。如果一个索引值在连续的查询中被访问的次数超过了这个阈值,InnoDB 就可能会考虑为其构建自适应哈希索引。
  • hash info使用次数: 这个条件可能涉及到自适应哈希索引内部数据结构的维护和使用情况。当一个索引值被加入到哈希索引中后,其相关的“hash info”结构会被更新以反映这个索引值的使用情况。如果这个“hash info”结构被多次使用(例如,在多次查询中被访问),那么这个索引值就可能被认为是“热点”数据,并且其哈希索引会被保留。

需要注意的是,这些条件和阈值是基于 InnoDB 内部实现和性能考虑的,它们可能会随着 MySQL 版本的变化而调整。此外,InnoDB 还可能会考虑其他因素,如内存使用情况、系统负载等,来动态地构建和维护自适应哈希索引。


最后,这些条件和阈值通常对用户是透明的,因为自适应哈希索引的构建和维护是由 InnoDB 自动完成的。用户可以通过 SHOW ENGINE INNODB STATUS 命令来查看自适应哈希索引的使用情况,但通常不需要直接干预其构建和维护过程。

四、如何充分利用自适应哈希索引进行性能优化

要充分利用自适应哈希索引进行性能优化,可以从以下几个方面入手:

4.1 监控自适应哈希索引的使用情况

通过执行 SHOW ENGINE INNODB STATUS 命令,可以查看自适应哈希索引的使用情况,包括索引的大小、构建速度以及查询性能等。这些信息可以帮助你了解自适应哈希索引在实际应用中的效果,并根据需要进行调整。

在输出的SEMAPHORES部分中

mysql> show engine innodb status\G
……
Hash table size 34673, node heap has 0 buffer(s)
0.00 hash searches/s, 0.00 non-hash searches/s

字节为单位,占用内存空间总量,通过hash searches、non-hash searches计算自适应hash索引带来的收益以及付出,确定是否开启自适应hash索引

4.2 优化查询语句

合理地设计查询语句,避免不必要的全表扫描和复杂的连接操作,可以减少对自适应哈希索引的依赖,从而提高查询性能。此外,使用索引覆盖扫描(Index Covering Scan)等技术可以进一步减少数据访问量,提升查询效率。

4.3 调整内存配置

根据系统的实际情况和查询需求,合理调整 InnoDB 存储引擎的内存配置参数,如 innodb_buffer_pool_size 和 innodb_adaptive_hash_index_partitions 等。这些参数的设置将直接影响自适应哈希索引的构建和维护效果。

4.4 定期维护数据库

定期对数据库进行维护操作,如优化表(OPTIMIZE TABLE)、重建索引(REBUILD INDEX)等,可以保持数据库的良好状态,提高自适应哈希索引的使用效果。


总之,自适应哈希索引是 MySQL加粗样式 中一种高效的索引优化技术,它能够在特定场景下显著提升查询性能。通过深入了解其工作原理和使用场景,并采取相应的优化措施,我们可以充分利用自适应哈希索引的优势,为数据库应用带来更好的性能体验。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
5月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
5月前
|
存储 关系型数据库 MySQL
MySQL数据库索引的数据结构?
MySQL中默认使用B+tree索引,它是一种多路平衡搜索树,具有树高较低、检索速度快的特点。所有数据存储在叶子节点,非叶子节点仅作索引,且叶子节点形成双向链表,便于区间查询。
181 4
|
7月前
|
存储 关系型数据库 MySQL
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
|
2月前
|
NoSQL 算法 Redis
【Docker】(3)学习Docker中 镜像与容器数据卷、映射关系!手把手带你安装 MySql主从同步 和 Redis三主三从集群!并且进行主从切换与扩容操作,还有分析 哈希分区 等知识点!
Union文件系统(UnionFS)是一种**分层、轻量级并且高性能的文件系统**,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下(unite several directories into a single virtual filesystem) Union 文件系统是 Docker 镜像的基础。 镜像可以通过分层来进行继承,基于基础镜像(没有父镜像),可以制作各种具体的应用镜像。
352 5
|
5月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
134 2
|
6月前
|
存储 关系型数据库 MySQL
MySQL覆盖索引解释
总之,覆盖索引就像是图书馆中那些使得搜索变得极为迅速和简单的工具,一旦正确使用,就会让你的数据库查询飞快而轻便。让数据检索就像是读者在图书目录中以最快速度找到所需信息一样简便。这样的效率和速度,让覆盖索引成为数据库优化师傅们手中的尚方宝剑,既能够提升性能,又能够保持系统的整洁高效。
167 9
|
7月前
|
机器学习/深度学习 关系型数据库 MySQL
对比MySQL全文索引与常规索引的互异性
现在,你或许明白了这两种索引的差异,但任何技术决策都不应仅仅基于理论之上。你可以创建你的数据库实验环境,尝试不同类型的索引,看看它们如何影响性能,感受它们真实的力量。只有这样,你才能熟悉它们,掌握什么时候使用全文索引,什么时候使用常规索引,以适应复杂多变的业务需求。
184 12
|
8月前
|
SQL 存储 关系型数据库
MySQL选错索引了怎么办?
本文探讨了MySQL中因索引选择不当导致查询性能下降的问题。通过创建包含10万行数据的表并插入数据,分析了一条简单SQL语句在不同场景下的执行情况。实验表明,当数据频繁更新时,MySQL可能因统计信息不准确而选错索引,导致全表扫描。文章深入解析了优化器判断扫描行数的机制,指出基数统计误差是主要原因,并提供了通过`analyze table`重新统计索引信息的解决方法。
213 3
|
3月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
135 3
|
3月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。

推荐镜像

更多