深入解析Java并发库(JUC)中的LongAdder

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 深入解析Java并发库(JUC)中的LongAdder

核心概述

LongAdder是一个用于并发环境中的长整型加法操作的类,它提供了比AtomicLong更高的吞吐量。LongAdder在内部维护了一个或多个变量(取决于当前并发级别和系统环境),每个线程对其中一个变量进行操作,从而减少了线程间的竞争。当需要获取总和时,这些变量会被加在一起。


与AtomicLong相比,它通过内部维护多个Cell对象,采用分段化的方式降低线程间的并发冲突,从而提高了性能。然而,这种设计也带来了一定的内存开销。LongAdder常用于需要高并发更新的统计和

一、LongAdder的使用

下面代码展示了如何在多线程环境中使用LongAdder来统计并发任务的执行次数,并最终获取总的执行次数。

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.LongAdder;

public class LongAdderComplexExample {

    public static void main(String[] args) throws InterruptedException {
        // 创建一个LongAdder用于统计任务执行次数
        LongAdder taskCounter = new LongAdder();

        // 创建一个线程池用于执行并发任务
        ExecutorService executorService = Executors.newFixedThreadPool(10);

        // 创建一个任务列表
        List<Runnable> tasks = new ArrayList<>();

        // 添加100个任务到任务列表
        for (int i = 0; i < 100; i++) {
            final int taskId = i;
            tasks.add(() -> {
                // 模拟任务执行时间
                try {
                    Thread.sleep((long) (Math.random() * 1000));
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                }
                // 任务执行完毕,增加计数器
                taskCounter.increment();
                System.out.println("Task " + taskId + " completed.");
            });
        }

        // 提交任务到线程池执行
        for (Runnable task : tasks) {
            executorService.submit(task);
        }

        // 关闭线程池(这会导致正在执行的任务完成后,线程池不再接受新任务)
        executorService.shutdown();

        // 等待所有任务执行完毕
        while (!executorService.isTerminated()) {
            // 等待线程池终止
        }

        // 输出任务执行总次数
        System.out.println("Total tasks completed: " + taskCounter.sum());
    }
}

首先创建了一个LongAdder对象taskCounter用于统计任务执行次数。然后,我们创建了一个固定大小的线程池executorService,用于并发执行任务。


接下来,我们创建了一个包含100个任务的列表tasks。每个任务都是一个Runnable对象,在其run方法中,我们模拟了任务执行的时间(通过Thread.sleep方法),并在任务执行完毕后使用LongAdder的increment方法增加计数器。


然后,我们将这些任务提交到线程池执行,并关闭线程池以拒绝新任务的提交。我们使用executorService.isTerminated()方法检查线程池是否已终止(即所有任务都已执行完毕),并在所有任务执行完毕后输出任务执行的总次数(通过LongAdder的sum方法获取)。


需要注意的是,在实际应用中,我们可能需要更精细地控制任务的提交和执行过程,例如使用CountDownLatch、CyclicBarrier或Semaphore等并发工具类来协调多个线程的执行顺序或限制并发数。此外,对于需要长时间运行的任务或需要频繁更新计数器的场景,我们可以考虑使用其他的并发容器或数据结构来优化性能。


二、LongAdder的性能优势

AtomicLong相比,LongAdder在高并发场景下的性能优势主要体现在以下几个方面:

  1. 减少线程间的竞争LongAdder内部维护了多个变量,每个线程对其中一个变量进行操作,从而减少了线程间的竞争。这使得在高并发场景下,LongAdder的性能优于AtomicLong
  2. 适用于统计和计数场景LongAdder适用于统计和计数场景,如记录某个方法的调用次数、统计某个事件的发生次数等。在这些场景中,我们不需要关心中间状态,只需要获取最终的总和。

然而,需要注意的是,LongAdder并不适用于所有场景。在需要精确控制中间状态的场景中(如需要获取任意时刻的精确值),AtomicLong可能更合适。此外,LongAdder的sum方法可能会比AtomicLong的get方法更耗时,因为它需要遍历内部的所有变量并求和。

三、LongAdder的实现原理

LongAdder的实现原理是基于分段锁和并发控制的思想,通过内部维护多个变量来减少线程间的竞争,从而提高并发性能。下面我们将深入分析LongAdder的实现原理。

1. 分段锁思想

LongAdder内部维护了一个或多个Cell对象,每个Cell对象包含一个长整型变量。这些Cell对象构成了一个数组,数组的大小通常是2的幂次方,以便使用位运算快速定位。每个线程在对LongAdder进行操作时,会根据当前线程的哈希码通过特定的哈希算法选择一个Cell对象进行操作。这种分段锁的思想类似于ConcurrentHashMap中的分段锁机制,通过将数据分散到多个段(Cell)上,减少了线程间的竞争。

2. 并发控制

当线程对LongAdder进行操作时,它会首先尝试获取对应Cell对象的锁(通过CAS操作实现)。如果成功获取锁,则线程会安全地更新该Cell对象的值。如果失败,则线程会尝试获取其他Cell对象的锁,或者更新base变量。这种并发控制机制确保了在高并发场景下,多个线程可以同时进行加法操作,而不会相互阻塞。


需要注意的是,LongAdder并不保证每个线程都固定地操作同一个Cell对象。当线程竞争同一个Cell对象失败时,它会尝试获取其他Cell对象的锁。这种灵活性使得LongAdder能够更好地适应动态变化的并发环境。

3. 变量合并与求和

当需要获取LongAdder的总和时,会遍历内部的所有Cell对象并将它们的值累加起来,然后再加上base变量的值。这个过程可能需要花费一些时间,因为需要遍历整个Cell数组。然而,在实际应用中,我们通常不需要频繁地获取总和,而是更关注于并发性能的优化。

需要指出的是,虽然LongAdder提供了比AtomicLong更高的吞吐量,但它并不适用于所有场景。在需要精确控制中间状态的场景中(如需要获取任意时刻的精确值),AtomicLong可能更合适。此外,LongAdder的sum方法可能会比AtomicLong的get方法更耗时,因为它需要遍历内部的所有变量并求和。因此,在选择使用LongAdder还是AtomicLong时,需要根据实际需求进行权衡和选择。


总之,LongAdder通过分段锁和并发控制的思想实现了高并发场景下的长整型加法操作优化。它内部维护了多个变量来减少线程间的竞争,并提供了灵活的并发控制机制以适应动态变化的并发环境。然而,在使用LongAdder时需要注意其适用场景和限制,并根据实际需求选择合适的并发工具类。


四、总结

LongAdder是Java并发库中的一个非常有用的工具类,它提供了比AtomicLong更高的吞吐量,适用于高并发场景下的统计和计数操作。然而,在使用LongAdder时,我们需要注意其适用场景和限制,并根据实际需求选择合适的并发工具类。


相关文章
|
28天前
|
存储 Java 计算机视觉
Java二维数组的使用技巧与实例解析
本文详细介绍了Java中二维数组的使用方法
44 15
|
6天前
|
XML JSON Java
Java中Log级别和解析
日志级别定义了日志信息的重要程度,从低到高依次为:TRACE(详细调试)、DEBUG(开发调试)、INFO(一般信息)、WARN(潜在问题)、ERROR(错误信息)和FATAL(严重错误)。开发人员可根据需要设置不同的日志级别,以控制日志输出量,避免影响性能或干扰问题排查。日志框架如Log4j 2由Logger、Appender和Layout组成,通过配置文件指定日志级别、输出目标和格式。
|
28天前
|
安全 druid Java
Java 访问数据库的奇妙之旅
本文介绍了Java访问数据库的几种常见方式
45 12
|
28天前
|
算法 搜索推荐 Java
【潜意识Java】深度解析黑马项目《苍穹外卖》与蓝桥杯算法的结合问题
本文探讨了如何将算法学习与实际项目相结合,以提升编程竞赛中的解题能力。通过《苍穹外卖》项目,介绍了订单配送路径规划(基于动态规划解决旅行商问题)和商品推荐系统(基于贪心算法)。这些实例不仅展示了算法在实际业务中的应用,还帮助读者更好地准备蓝桥杯等编程竞赛。结合具体代码实现和解析,文章详细说明了如何运用算法优化项目功能,提高解决问题的能力。
57 6
|
24天前
|
小程序 前端开发 关系型数据库
uniapp跨平台框架,陪玩系统并发性能测试,小程序源码搭建开发解析
多功能一体游戏陪练、语音陪玩系统的开发涉及前期准备、技术选型、系统设计与开发及测试优化。首先,通过目标用户分析和竞品分析明确功能需求,如注册登录、预约匹配、实时语音等。技术选型上,前端采用Uni-app支持多端开发,后端选用PHP框架确保稳定性能,数据库使用MySQL保证数据一致性。系统设计阶段注重UI/UX设计和前后端开发,集成WebSocket实现语音聊天。最后,通过功能、性能和用户体验测试,确保系统的稳定性和用户满意度。
|
28天前
|
存储 算法 搜索推荐
【潜意识Java】期末考试可能考的高质量大题及答案解析
Java 期末考试大题整理:设计一个学生信息管理系统,涵盖面向对象编程、集合类、文件操作、异常处理和多线程等知识点。系统功能包括添加、查询、删除、显示所有学生信息、按成绩排序及文件存储。通过本题,考生可以巩固 Java 基础知识并掌握综合应用技能。代码解析详细,适合复习备考。
21 4
|
28天前
|
存储 Java
【潜意识Java】期末考试可能考的选择题(附带答案解析)
本文整理了 Java 期末考试中常见的选择题,涵盖数据类型、控制结构、面向对象编程、集合框架、异常处理、方法、流程控制和字符串等知识点。每道题目附有详细解析,帮助考生巩固基础,加深理解。通过这些练习,考生可以更好地准备考试,掌握 Java 的核心概念和语法。
32 1
|
28天前
|
Java 编译器 程序员
【潜意识Java】期末考试可能考的简答题及答案解析
为了帮助同学们更好地准备 Java 期末考试,本文列举了一些常见的简答题,并附上详细的答案解析。内容包括类与对象的区别、多态的实现、异常处理、接口与抽象类的区别以及垃圾回收机制。通过这些题目,同学们可以深入理解 Java 的核心概念,从而在考试中更加得心应手。每道题都配有代码示例和详细解释,帮助大家巩固知识点。希望这些内容能助力大家顺利通过考试!
19 0
|
3月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
130 2
|
2月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析

热门文章

最新文章

推荐镜像

更多