1 -> priority_queue的介绍和使用
1.1 -> priority_queue的介绍
priority_queue的文档介绍
1. 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素是它所包含的元素中最大的。
2. 类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)。
3. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。
4. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作:
- empty(): 检测容器是否为空
- size(): 返回容器中有效元素个数
- front(): 返回容器中第一个元素的引用
- push_back(): 在容器尾部插入元素
- pop_back(): 删除容器尾部元素
5. 标准容器类vector和的deque满足这些需求。默认情况下,如果没有特定的priority_queue类实例化指定容器列,则使用vector。
6. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数make_heap、push_heap和pop_heap来自动完成此操作。
1.2 -> priority_queue的使用
优先队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue。注意:默认情况下priority_queue是大堆。
函数声明 | 接口说明 |
priority_queue()/priority_queue(first, last) | 构造一个空的优先队列 |
empty() | 检测优先队列是否为空,是返回true,否则返回false |
top() | 返回优先队列中最大(或最小元素),即堆顶元素 |
push(x) | 在优先队列中插入元素x |
pop() | 删除优先队列中最大(或最小)元素,即堆顶元素 |
【注意】
1. 默认情况下,priority_queue是大堆。
#define _CRT_SECURE_NO_WARNINGS 1 #include <iostream> #include <vector> #include <queue> #include <functional> using namespace std; void TestPriorityQueue() { vector<int> v{ 3,2,7,6,0,4,1,9,8,5 }; priority_queue<int> q1; for (auto& e : v) q1.push(e); cout << q1.top() << endl; // 如果要创建小堆,将第三个模板参数换成greater比较方式 priority_queue<int, vector<int>, greater<int>> q2(v.begin(), v.end()); cout << q2.top() << endl; } int main() { TestPriorityQueue(); return 0; }
2. 如果在priority_queue中放自定义类型数据,用户需要在自定义类型中提供>或<的重载。
class Date { public: Date(int year = 1900, int month = 1, int day = 1) : _year(year) , _month(month) , _day(day) {} bool operator<(const Date& d)const { return (_year < d._year) || (_year == d._year && _month < d._month) || (_year == d._year && _month == d._month && _day < d._day); } bool operator>(const Date& d)const { return (_year > d._year) || (_year == d._year && _month > d._month) || (_year == d._year && _month == d._month && _day > d._day); } friend ostream& operator<<(ostream& _cout, const Date& d) { _cout << d._year << "-" << d._month << "-" << d._day; return _cout; } private: int _year; int _month; int _day; }; void TestPriorityQueue() { // 大堆,需要用户在自定义类型中提供<的重载 priority_queue<Date> q1; q1.push(Date(2024, 10, 29)); q1.push(Date(2024, 10, 28)); q1.push(Date(2024, 10, 30)); cout << q1.top() << endl; // 如果要创建小堆,需要用户提供>的重载 priority_queue<Date, vector<Date>, greater<Date>> q2; q2.push(Date(2024, 10, 29)); q2.push(Date(2024, 10, 28)); q2.push(Date(2024, 10, 30)); cout << q2.top() << endl; }
1.3 -> priority_queue的模拟实现
#include <iostream> #include <vector> using namespace std; // priority_queue--->堆 namespace fyd { template<class T> struct less { bool operator()(const T& left, const T& right) return left < right; }; template<class T> struct greater { bool operator()(const T& left, const T& right) return left > right; }; template<class T, class Container = std::vector<T>, class Compare = less<T>> class priority_queue { public: // 创造空的优先级队列 priority_queue() : c() {} template<class Iterator> priority_queue(Iterator first, Iterator last) : c(first, last) { // 将c中的元素调整成堆的结构 int count = c.size(); int root = ((count - 2) >> 1); for (; root >= 0; root--) AdjustDown(root); } void push(const T& data) { c.push_back(data); AdjustUP(c.size() - 1); } void pop() { if (empty()) return; swap(c.front(), c.back()); c.pop_back(); AdjustDown(0); } size_t size()const { return c.size(); } bool empty()const { return c.empty(); } // 堆顶元素不允许修改,因为:堆顶元素修改可以会破坏堆的特性 const T& top()const { return c.front(); } private: // 向上调整 void AdjustUP(int child) { int parent = ((child - 1) >> 1); while (child) { if (Compare()(c[parent], c[child])) { swap(c[child], c[parent]); child = parent; parent = ((child - 1) >> 1); } else return; } } // 向下调整 void AdjustDown(int parent) { size_t child = parent * 2 + 1; while (child < c.size()) { // 找以parent为根的较大的孩子 if (child + 1 < c.size() && Compare()(c[child], c[child + 1])) child += 1; // 检测双亲是否满足情况 if (Compare()(c[parent], c[child])) { swap(c[child], c[parent]); parent = child; child = parent * 2 + 1; } else return; } } private: Container c; }; }
2 -> 容器适配器
2.1 -> 什么是适配器
适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口。
2.2 -> STL标准库中stack和queue的底层结构
虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配器,这是因为stack和queue只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque。
2.3 -> deque的介绍
2.3.1 -> deque的原理介绍
deque(双端队列):是一种双开口的”连续“空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。
deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组,其底层结构如下:
双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其”整体连续“以及随机访问的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图:
那deque是如何借助其迭代器维护其假象连续的结构呢?
2.3.2 -> deque的缺陷
与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率势必比vector高。
与list比较,其底层时连续空间,空间利用率比较高,不需要存储额外字段。
但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构。
2.4 -> 为什么选择deque作为stack和queue的底层默认容器
stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据结构,只要具有push_back()和pop_front()操作的线性结构,都可以作为queue的底层容器,比如list。但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:
- stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或两端进行操作。
- 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长时,deque不仅效率高,而且内存使用率高。
结合了deque的优点,而完美避开了其缺陷。
2.5 -> STL标准库中对于stack和queue的模拟实现
2.5.1 -> stack的模拟实现
#include<deque> namespace fyd { template<class T, class Con = deque<T>> //template<class T, class Con = vector<T>> //template<class T, class Con = list<T>> class stack { public: stack() {} void push(const T& x) { _c.push_back(x); } void pop() { _c.pop_back(); } T& top() { return _c.back(); } const T& top()const { return _c.back(); } size_t size()const { return _c.size(); } bool empty()const { return _c.empty(); } private: Con _c; }; }
2.5.2 -> queue的模拟实现
#include<deque> #include <list> namespace fyd { template<class T, class Con = deque<T>> //template<class T, class Con = list<T>> class queue { public: queue() {} void push(const T& x) { _c.push_back(x); } void pop() { _c.pop_front(); } T& back() { return _c.back(); } const T& back()const { return _c.back(); } T& front() { return _c.front(); } const T& front()const { return _c.front(); } size_t size()const { return _c.size(); } bool empty()const { return _c.empty(); } private: Con _c; }; }
感谢各位大佬支持!!!
互三啦!!!