C语言---求一个整数存储在内存中的二进制中1的个数--3种方法

简介: C语言---求一个整数存储在内存中的二进制中1的个数--3种方法
//编写代码实现:求一个整数存储在内存中的二进制中1的个数
//第一种写法
/*int count_bit_one(unsigned int n)
{
    int count = 0;
    while (n )//除到最后余数是0,那么这个循环就结束了
    {//这个题就是可以想成求15的二进制的过程
        //每次都除以2,余数为1的时候就count++
        if ((n % 2) == 1)//假设输入的是15
            count++;
        n = n / 2;//换下一个数继续除,直到所有的数除完
        //15/2=7  7/2=3  3/2=1  1/2=0,四次计算,每次计算的余数都为1
    }//15的二进制是1111
    return count; 
}
//对于这部分函数不理解的话可以自己画出自己一次计算的一个数的二进制的过程
 
 
int main()
{
    int num = 0;
    scanf("%d", &num);
    int ret = count_bit_one(num);
    printf("%d\n", ret);
 
 
    return 0;
}*/
但是我们输入-1,这个输出结果就有问题了
解决方法:传过去num,我们用unsigned int n来接收传过来的数,
使用 unsigned int 在这个函数中是恰当的,因为它确保了
 函数可以正确处理所有非负整数值,并且避免了有符号整数
 可能带来的问题。
 
 
 
 
//第二种算法--不考虑正负号
//-1在内存中的补码是全1
//11111111111111111111111111111111
//不关心符号的写法
 
 
//n&1==1   就说明n的二进制位的最低位是1
//n&1==0   就说明n的二进制位的最低位是0
 
//计算完这一位,想要计算下一位,那么就需要用到
//右移操作符了
//把n的二进制数的每一位都移到最低位
//00000000000000000000000000000001--1的补码
//因为&的用法是对应的二进制位,
// 有0则为0,两个同时为1才为1
//如果n的二进制数最低位和1的二进制数最低位产生反应,
//那么两个1就会场生一个1,
// 如果n的最低位数字是0,那么产生的数字仅仅是0
/*int count_bit_one(int n)
{
    int count = 0;
    for (int i = 0; i < 32; i++)
    {//有0则为0,两个同时为1才为1
        if ((n >> i) & 1 == 1)//i是从0开始的,也就是最开始的n的最低位
            //然后利用右移操作符依次变更最低位的数字
        {
            count++;//如果结果为1那么就++
        }   
    }
 
    return count;
}
 
 
int main()    
{    
    int num = 0;    
    scanf("%d", &num);  
    int ret = count_bit_one(num);   
    printf("%d\n", ret);    
 
 
    return 0;   
}    */
 
 
 
//第三种写法
//铺垫
/*
n=11   n=n&(n-1)
二进制
一开始:
n  = 1011
n-1= 1010
赋值后:   
n=n&(n-1),   &有 0就是0,两个1就是1
得到一个新的n
n  = 1010
n-1 =1001
再次用新得来的n和n-1来为新的n赋值
n=n&(n-1)
n   =    1000
n-1 =    0111
再次赋值
n=n&(n-1)
n=0000
 
 
n从最开始的1011不断赋值到0000,
n=n&(n-1)这个方程把n的二进制序列中的最右边的1去掉了
*/
 
 
//即通过反复应用 n = n & (n - 1); 直到 n 变为0,
// 每次操作清除一个1,计数器增加1,最后得到1的总数。
 
 
 
int count_bit_one(int n)
{
    int count = 0;
    int i = 0;
 
    while (n)//循环停下来的时候n就变成0了
    {
        n = n & (n - 1);//执行一次就会去掉一个1
        count++;
    }
 
    return count;
}
 
 
 
 
int main()
{
    int num = 0;
    scanf("%d", &num);
    int ret = count_bit_one(num);
    printf("%d\n", ret);
 
 
    return 0;
}    
 
 
 
每次执行 n = n & (n - 1); 都会减少 n 的二进制表示中1的个数,直到没有1剩下,此时 n 变为0,循环结束。
目录
打赏
0
0
0
0
145
分享
相关文章
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
在C语言中,内存布局是程序运行时非常重要的概念。内存布局直接影响程序的性能、稳定性和安全性。理解C程序的内存布局,有助于编写更高效和可靠的代码。本文将详细介绍C程序的内存布局,包括代码段、数据段、堆、栈等部分,并提供相关的示例和应用。
100 5
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
【C语言】进制转换无难事:二进制、十进制、八进制与十六进制的全解析与实例
进制转换是计算机编程中常见的操作。在C语言中,了解如何在不同进制之间转换数据对于处理和显示数据非常重要。本文将详细介绍如何在二进制、十进制、八进制和十六进制之间进行转换。
207 5
C语言如何使用结构体和指针来操作动态分配的内存
在C语言中,通过定义结构体并使用指向该结构体的指针,可以对动态分配的内存进行操作。首先利用 `malloc` 或 `calloc` 分配内存,然后通过指针访问和修改结构体成员,最后用 `free` 释放内存,实现资源的有效管理。
421 13
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
119 6
C 语言指针与内存管理
C语言中的指针与内存管理是编程的核心概念。指针用于存储变量的内存地址,实现数据的间接访问和操作;内存管理涉及动态分配(如malloc、free函数)和释放内存,确保程序高效运行并避免内存泄漏。掌握这两者对于编写高质量的C语言程序至关重要。
145 11
C 语言指针详解 —— 内存操控的魔法棒
《C 语言指针详解》深入浅出地讲解了指针的概念、使用方法及其在内存操作中的重要作用,被誉为程序员手中的“内存操控魔法棒”。本书适合C语言初学者及希望深化理解指针机制的开发者阅读。
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
119 1
在C语言中指针数组和数组指针在动态内存分配中的应用
在C语言中,指针数组和数组指针均可用于动态内存分配。指针数组是数组的每个元素都是指针,可用于指向多个动态分配的内存块;数组指针则指向一个数组,可动态分配和管理大型数据结构。两者结合使用,灵活高效地管理内存。
【c语言】字符串函数和内存函数
本文介绍了C语言中常用的字符串函数和内存函数,包括`strlen`、`strcpy`、`strcat`、`strcmp`、`strstr`、`strncpy`、`strncat`、`strncmp`、`strtok`、`memcpy`、`memmove`和`memset`等函数的使用方法及模拟实现。文章详细讲解了每个函数的功能、参数、返回值,并提供了具体的代码示例,帮助读者更好地理解和掌握这些函数的应用。
93 0
深入C语言内存:数据在内存中的存储
深入C语言内存:数据在内存中的存储