数据结构算法--6 希尔排序和计数排序

简介: **希尔排序**是插入排序的改进版,通过分组插入来提高效率。它逐步减少元素间的间隔(增量序列),每次对每个间隔内的元素进行插入排序,最终增量为1时进行最后一次直接插入排序,实现整体接近有序到完全有序的过程。例如,对数组`5, 7, 4, 6, 3, 1, 2, 9, 8`,先以间隔`d=4`排序,然后`d=2`,最后`d=1`,完成排序。计数排序则适用于0到100的数值,通过统计每个数出现次数,创建对应计数数组,再根据计数重建有序数组,时间复杂度为`O(n)`。

希尔排序


希尔排序与插入排序原理相同,希尔排序是一种分组插入排序算法


> 首先取一个整数d1=n/2,将元素分为d1个组,每组相邻两元素之间距离为d1,在各组内之间插入排序。

> 取第二个整数d2=n/2,重复上述分组排序过程,直到di=1,即所有元素在同一组内直接插入排序

> 希尔排序每趟并不使某些元素有序,而是使整体数据越来越接近有序;最后一趟排序使所有数据有序。

给一个数组:5,7,4,6,3,1,2,9,8

首先d=4:




5和3交换位置;7和1交换位置;4和2交换位置;6和9位置不变;

数组在第一轮变为3,1,2,6,5,7,4,9,8

然后d=2:



两组内部再次插入排序,结果变为2,1,3,6,4,7,5,9,8

最后d=1,整体插入排序使数组有序:1,2,3,4,5,6,7,8,9

> 希尔排序代码:


def insert_sort_gap(li,gap):
    for i in range(gap,len(li)):  # i 表示摸到牌的下标
        tmp=li[i]
        j=i-gap
        while j>=0 and li[j]>tmp:
            li[j+gap]=li[j]
            j-=gap
        li[j+gap]=tmp
 
def shell_sort(li):
    d=len(li) //2
    while d>=1:
        insert_sort_gap(li,d)
        d //=2
     


计数排序


计数排序是对列表进行排序,列表中的数大小在0到100之间,时间复杂度为O(n)

对于一个数组,我们先写出一个从0到5的数,然后在这些数后边写上每个值在列表中出现的次数



我们在整个数组中先写出这些统计的值的数默认为0

我们找出出现的次数后:


将其按大小写出:1,1,1,2,2,3,3,3,4,5

> 希尔排序代码:

def count_sort(li,max_count=100):
    count=[0 for _ in range(max_count+1)]   #生成100个0,他们的下标就是列表中的值
    for val in li:
        count[val] +=1
    li.clear()
    for ind,val in enumerate(count):
        for i in range(val):                #添加整个值的次数为val
            li.append(ind)                  
相关文章
|
4月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
156 1
|
4月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
150 0
|
8月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
283 10
 算法系列之数据结构-二叉树
|
8月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
233 3
 算法系列之数据结构-Huffman树
|
8月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
338 22
|
9月前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
353 30
|
9月前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
448 25
|
9月前
|
存储 人工智能 算法
C 408—《数据结构》算法题基础篇—数组(通俗易懂)
408考研——《数据结构》算法题基础篇之数组。(408算法题的入门)
574 23
|
10月前
|
搜索推荐 算法 数据处理
【C++数据结构——内排序】希尔排序(头歌实践教学平台习题)【合集】
本文介绍了希尔排序算法的实现及相关知识。主要内容包括: - **任务描述**:实现希尔排序算法。 - **相关知识**: - 排序算法基础概念,如稳定性。 - 插入排序的基本思想和步骤。 - 间隔序列(增量序列)的概念及其在希尔排序中的应用。 - 算法的时间复杂度和空间复杂度分析。 - 代码实现技巧,如循环嵌套和索引计算。 - **测试说明**:提供了测试输入和输出示例,帮助验证代码正确性。 - **我的通关代码**:给出了完整的C++代码实现。 - **测试结果**:展示了代码运行的测试结果。 通过这些内容,读者可以全面了解希尔排序的原理和实现方法。
246 10
|
10月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
454 3

热门文章

最新文章