YOLOv8改进 | Neck | 添加双向特征金字塔BiFPN【含二次独家创新】

简介: 💡【YOLOv8专栏】探索特征融合新高度!BiFPN优化版提升检测性能🔍。双向加权融合解决信息丢失痛点,统一缩放增强模型效率🚀。论文&官方代码直达链接,模块化教程助你轻松实践📝。立即阅读:[YOLOv8涨点全攻略](https://blog.csdn.net/m0_67647321/category_12548649.html)✨

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡

专栏目录:《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有40+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进

针对在特征提取过程中,特征信息丢失,特征提取能力不足等问题,研究人员提出了一种加权双向特征金字塔网络(BiFPN),它允许简单快速的多尺度特征融合;可以同时统一缩放所有主干网络、特征网络以及边界框/类别预测网络的分辨率、深度和宽度。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址:YOLOv8改进——更新各种有效涨点方法——点击即可跳转

1. 原理

image.png

论文地址:EfficientDet: Scalable and Efficient Object Detection——点击即可跳转

官方代码:BiFPN官方代码仓库——点击即可跳转

BIFPN,全称为双向特征金字塔网络(Bidirectional Feature Pyramid Network),是一种用于目标检测和图像分割的神经网络架构。它在EfficientDet和其他一些计算机视觉任务中被广泛使用。BIFPN的设计目标是提高特征融合的效率和效果,使得模型在计算资源有限的情况下仍能保持高性能。以下是对BIFPN的详细讲解:

  • 背景

在计算机视觉任务中,特征金字塔网络(FPN)是一种常用的方法,它通过构建不同尺度的特征图来捕获不同尺度的目标。然而,传统的FPN存在一些缺点,如特征融合效率低、信息流通不充分等。BIFPN则通过引入双向的特征融合机制和加权的特征融合方法来克服这些问题。

  • 核心思想

双向特征融合: 传统的FPN是单向的,即从高层特征图向低层特征图传递信息。而BIFPN在此基础上增加了反向的信息传递,即从低层特征图向高层特征图传递信息。这种双向的信息流动使得特征图之间的信息融合更加充分。

加权特征融合: 在BIFPN中,不同尺度的特征图在融合时会分配不同的权重。这些权重是可学习的参数,模型在训练过程中会自动调整它们,以最优地融合不同尺度的特征。这样一来,模型能够更好地利用每个特征图的信息,提高整体的特征表示能力。

  • 结构细节

BIFPN的结构设计非常灵活,可以适应不同的网络架构和任务需求。以下是BIFPN的几个关键组件:

上下文融合层:在上下文融合层中,BIFPN将来自不同尺度的特征图进行融合,采用加权求和的方式。这种加权求和通过学习到的权重来平衡不同特征图的贡献。

重复融合模块:BIFPN中通常会堆叠多个融合模块,这些模块会反复进行特征融合,从而进一步增强特征的表达能力。

尺度变化处理:BIFPN能够处理不同尺度的特征图,并在融合过程中考虑到这些尺度变化。通过上下采样等操作,BIFPN可以有效地处理不同分辨率的特征图。

  • 优势

高效性:通过加权特征融合和重复融合模块,BIFPN能够在保持高效计算的同时,提升特征表示能力。

鲁棒性:双向特征融合使得BIFPN对不同尺度目标的检测更加鲁棒,能够更好地应对多尺度问题。

灵活性:BIFPN可以方便地集成到不同的神经网络架构中,适应不同的任务需求。

  • 应用

BIFPN被广泛应用于各种计算机视觉任务中,尤其是在目标检测和图像分割方面表现出色。比如,在EfficientDet中,BIFPN作为核心组件之一,通过高效的特征融合机制显著提升了模型的检测性能。

  • 总结

BIFPN通过引入双向特征融合和加权特征融合,克服了传统FPN的局限性,提高了特征融合的效率和效果。其灵活高效的设计使其在计算机视觉任务中得到广泛应用,为提升模型性能提供了有力支持。

2.BiFPN代码实现

2.1 将BiFPN代码添加到YOLOv8种

关键步骤一: 将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/block.py中,并在该文件的all中添加“Concat_BiFPN”

class Concat_BiFPN(nn.Module):
    def __init__(self, dimension=1):
        super(Concat_BiFPN, self).__init__()
        self.d = dimension
        self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.epsilon = 0.0001

    def forward(self, x):
        w = self.w
        weight = w / (torch.sum(w, dim=0) + self.epsilon)  # 将权重进行归一化
        # Fast normalized fusion
        x = [weight[0] * x[0], weight[1] * x[1]]
        return torch.cat(x, self.d)

完整内容: YOLOv8改进 | Neck | 添加双向特征金字塔BiFPN【含二次独家创新】——点击即可跳转

相关文章
|
7月前
YOLOv5改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(轻量化Neck、全网独家首发)
YOLOv5改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(轻量化Neck、全网独家首发)
526 4
|
5月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 特征融合】 YOGA iAFF :注意力机制在颈部的多尺度特征融合
【YOLOv8改进 - 特征融合】 YOGA iAFF :注意力机制在颈部的多尺度特征融合
|
5月前
|
编解码 Go 文件存储
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
|
7月前
|
编解码 算法 计算机视觉
YOLO特征融合的原理是怎样的?
YOLO特征融合的原理是怎样的?
|
5月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
|
5月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进 - 特征融合NECK】 GIRAFFEDET之GFPN :广义特征金字塔网络,高效地融合多尺度特征
YOLOv8专栏探讨了目标检测的创新改进,提出了GiraffeDet,一种轻量级主干和深度颈部模块结合的高效检测网络。GiraffeDet使用S2D-chain和GFPN,优化多尺度信息交换,提升检测性能。代码和论文可在相关链接找到。GFPN通过跳跃和跨尺度连接增强信息融合。文章还展示了核心组件如SPPV4、Focus和CSPStage的代码实现。
|
5月前
|
编解码 计算机视觉 网络架构
【YOLOv10改进- 特征融合NECK】BiFPN:加权双向特征金字塔网络
YOLOv10专栏探讨了目标检测的效率提升,提出BiFPN,一种带加权和自适应融合的双向特征金字塔网络,优化了多尺度信息传递。EfficientDet系列利用这些创新在效率与性能间取得更好平衡,D7模型在COCO测试集上达到55.1 AP。YOLOv8引入MPDIoU,结合BiFPN学习分支权重,提高检测精度。详情见[YOLOv10 创新改进](https://blog.csdn.net/shangyanaf/category_12712258.html)和相关文章。
|
6月前
|
计算机视觉
【YOLOv8改进 - 特征融合NECK】 HS-FPN :用于处理多尺度特征融合的网络结构,降低参数
MFDS-DETR是针对白细胞检测的创新方法,它通过HS-FPN和可变形自注意力解决规模差异和特征稀缺问题。HS-FPN利用通道注意力模块增强特征表达,改善多尺度挑战。代码和数据集可在给定链接获取。此方法在WBCDD、LISC和BCCD数据集上表现优越,证明了其有效性和通用性。YOLO系列文章提供了更多目标检测改进和实战案例。
|
7月前
|
编解码 计算机视觉 网络架构
【YOLOv8改进】BiFPN:加权双向特征金字塔网络 (论文笔记+引入代码)
该专栏深入研究了YOLO目标检测的神经网络架构优化,提出了加权双向特征金字塔网络(BiFPN)和复合缩放方法,以提升模型效率。BiFPN通过双向跨尺度连接和加权融合增强信息传递,同时具有自适应的网络拓扑结构。结合EfficientNet,构建了EfficientDet系列检测器,在效率和准确性上超越先前技术。此外,介绍了YOLOv8如何引入MPDIoU并应用BiFPN进行可学习权重的特征融合。更多详情可参考提供的专栏链接。
|
7月前
YOLOv8改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(降低100W参数,全网独家首发)
YOLOv8改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(降低100W参数,全网独家首发)
399 2

相关实验场景

更多