NumPy 双曲函数与集合操作详解

本文涉及的产品
Serverless 应用引擎 SAE,800核*时 1600GiB*时
注册配置 MSE Nacos/ZooKeeper,118元/月
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
简介: **NumPy 概览:** 使用 `numpy.sinh()`, `numpy.cosh()`, `numpy.tanh()` 计算双曲函数;示例包括求弧度值的双曲正弦、余弦。此外,`numpy.arcsinh()`, `numpy.arccosh()`, `numpy.arctanh()` 用于求反函数。同时,NumPy 提供集合操作如 `numpy.unique()` 构建唯一元素数组,`numpy.union1d()` 求并集,`numpy.intersect1d()` 求交集,`numpy.setdiff1d()` 求差集,`numpy.setxor1d()` 求对称差。

NumPy 双曲函数

NumPy 提供了 sinh()cosh()tanh() 等 ufunc,它们接受弧度值并生成相应的双曲正弦、双曲余弦和双曲正切值。

示例:

import numpy as np

x = np.sinh(np.pi/2)

print(x)

示例

找到数组 arr 中所有值的双曲余弦值:

import numpy as np

arr = np.array([np.pi/2, np.pi/3, np.pi/4, np.pi/5])

x = np.cosh(arr)

print(x)

查找角度

从双曲正弦、双曲余弦、双曲正切值查找角度。例如,sinh、cosh 和 tanh 的反函数(arcsinh、arccosh、arctanh)。

NumPy 提供了 arcsinh()arccosh()arctanh() 等 ufunc,它们给出相应 sinh、cosh 和 tanh 值的弧度值。

示例

找到 1.0 的角度:

import numpy as np

x = np.arcsinh(1.0)

print(x)

数组中每个值的角度

示例

找到数组中所有 tanh 值的角度:

import numpy as np

arr = np.array([0.1, 0.2, 0.5])

x = np.arctanh(arr)

print(x)

NumPy 集合操作

什么是集合

在数学中,集合是一组唯一元素的集合。

集合用于频繁进行交集、并集和差集运算。

在 NumPy 中创建集合

我们可以使用 NumPy 的 unique() 方法从任何数组中找到唯一元素。例如,创建一个集合数组,但请记住,集合数组应该只是一维数组。

示例
将以下包含重复元素的数组转换为集合:

import numpy as np

arr = np.array([1, 1, 1, 2, 3, 4, 5, 5, 6, 7])

x = np.unique(arr)

print(x)

查找并集

要找到两个数组的唯一值,请使用 union1d() 方法。

示例

找到以下两个集合数组的并集:

import numpy as np

arr1 = np.array([1, 2, 3, 4])
arr2 = np.array([3, 4, 5, 6])

newarr = np.union1d(arr1, arr2)

print(newarr)

查找交集

要找到仅在两个数组中都存在的值,请使用 intersect1d() 方法。

示例

找到以下两个集合数组的交集:

import numpy as np

arr1 = np.array([1, 2, 3, 4])
arr2 = np.array([3, 4, 5, 6])

newarr = np.intersect1d(arr1, arr2, assume_unique=True)

print(newarr)

注意: intersect1d() 方法接受一个可选参数 assume_unique,如果设置为 True,则可以加快计算速度。在处理集合时应始终将其设置为 True。

查找差集

要找到第一个集合中存在但第二个集合中不存在的值,请使用 setdiff1d() 方法。

示例

找到 set2 中不存在的 set1 的差集:

import numpy as np

set1 = np.array([1, 2, 3, 4])
set2 = np.array([3, 4, 5, 6])

newarr = np.setdiff1d(set1, set2, assume_unique=True)

print(newarr)

注意: setdiff1d() 方法接受一个可选参数 assume_unique,如果设置为 True,则可以加快计算速度。在处理集合时应始终将其设置为 True。

查找对称差

要找到两个集合中都不存在的值,请使用 setxor1d() 方法。

示例

找到 set1 和 set2 的对称差:

import numpy as np

set1 = np.array([1, 2, 3, 4])
set2 = np.array([3, 4, 5, 6])

newarr = np.setxor1d(set1, set2, assume_unique=True)

print(newarr)

注意: setxor1d() 方法接受一个可选参数 assume_unique,如果设置为 True,则可以加快计算速度。在处理集合时应始终将其设置为 True。

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

相关文章
|
10月前
|
机器学习/深度学习 数据处理 C语言
numpy通用函数:快速的逐元素数组函数
numpy通用函数:快速的逐元素数组函数
numpy通用函数:快速的逐元素数组函数
|
1月前
|
Python
NumPy 双曲函数与集合操作详解
NumPy 双曲函数 NumPy 提供了 sinh()、cosh() 和 tanh() 等 ufunc,它们接受弧度值并生成相应的双曲正弦、双曲余弦和双曲正切值。
|
1月前
|
存储 数据处理 C语言
NumPy 通用函数(ufunc):高性能数组运算的利器
NumPy的通用函数(ufunc)提供高性能的逐元素运算,支持向量化操作和广播机制,能应用于数组的数学、逻辑和比较运算。ufunc可提高计算速度,避免低效的循环,并允许自定义函数以满足特定需求。例如,ufunc实现加法比循环更高效。通过`frompyfunc`可创建自定义ufunc。判断函数是否为ufunc,可检查其类型是否为`numpy.ufunc`。ufunc练习包括数组的平方、平方根、元素积及性能对比。
29 0
|
2月前
|
安全 Serverless 数据处理
通用函数(ufuncs)在NumPy中的应用实践
【4月更文挑战第17天】通用函数(ufuncs)是NumPy中非常重要的工具,它们允许对数组中的每个元素执行相同的数学运算,无需编写循环。通过ufuncs,我们可以高效地处理大规模数据集,并利用广播机制在形状不同的数组之间进行运算。掌握ufuncs的应用实践,将极大地提升我们在数值计算和数据处理方面的效率。
|
2月前
|
存储 测试技术 数据库
NumPy 秘籍中文第二版:六、特殊数组和通用函数
NumPy 秘籍中文第二版:六、特殊数组和通用函数
42 0
|
2月前
|
算法 Serverless 测试技术
NumPy 秘籍中文第二版:三、掌握常用函数
NumPy 秘籍中文第二版:三、掌握常用函数
49 0
|
2月前
|
数据处理 Python
NumPy 中级教程——通用函数(ufuncs)
NumPy 中级教程——通用函数(ufuncs)
109 0
|
2月前
|
Python
关于Python的Numpy库reshape()函数的用法
1.介绍 更改数组的形状,不改变原数组 2.语法 a = np.reshape(mat, newshape, order = ‘C’) a : newshape形状的新数组 mat : 原数组
78 0
|
11月前
|
Python
Python map() 函数 和 numpy mean()函数
Python map() 函数 和 numpy mean()函数
110 0
|
机器学习/深度学习 索引 Python
这8个NumPy函数可以解决90%的常见问题
NumPy是一个用于科学计算和数据分析的Python库,也是机器学习的支柱。可以说NumPy奠定了Python在机器学习中的地位。NumPy提供了一个强大的多维数组对象,以及广泛的数学函数,可以对大型数据集进行有效的操作。这里的“大”是指数百万行。
11259 0