Spring AI更多模型支持、图像和音频处理

简介: Spring AI更多模型支持、图像和音频处理

Spring AI更多模型支持、图像和音频处理

 

导入依赖

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
   <modelVersion>4.0.0</modelVersion>
 
   <groupId>com.example</groupId>
   <artifactId>ai-demo</artifactId>
   <version>0.0.1-SNAPSHOT</version>
   <packaging>jar</packaging>
 
   <name>ai-demo</name>
   <description>Spring Boot AI Demo</description>
 
   <parent>
       <groupId>org.springframework.boot</groupId>
       <artifactId>spring-boot-starter-parent</artifactId>
       <version>2.7.0</version>
       <relativePath/> <!-- lookup parent from repository -->
   </parent>
 
   <properties>
       <java.version>11</java.version>
   </properties>
 
   <dependencies>
       <dependency>
           <groupId>org.springframework.boot</groupId>
           <artifactId>spring-boot-starter-web</artifactId>
       </dependency>
       <dependency>
           <groupId>org.springframework.boot</groupId>
           <artifactId>spring-boot-starter-json</artifactId>
       </dependency>
       <dependency>
           <groupId>org.springframework.boot</groupId>
           <artifactId>spring-boot-starter-tomcat</artifactId>
       </dependency>
       <dependency>
           <groupId>org.tensorflow</groupId>
           <artifactId>tensorflow</artifactId>
           <version>2.7.0</version>
       </dependency>
   </dependencies>
 
   <build>
       <plugins>
           <plugin>
               <groupId>org.springframework.boot</groupId>
               <artifactId>spring-boot-maven-plugin</artifactId>
           </plugin>
       </plugins>
   </build>
</project>

 

1. 更多模型支持

 

Spring AI提供了丰富的模型支持,涵盖了自然语言处理、计算机视觉、语音处理等多个领域。以下是一些常见的模型和用例:

 

- 自然语言处理(NLP)模型: 包括文本分类、命名实体识别、情感分析等。

- 计算机视觉模型: 包括图像分类、目标检测、图像生成等。

- 语音处理模型: 包括语音识别、语音合成、情感分析等。

 

在使用这些模型时,可以根据具体的业务需求选择合适的模型和算法。Spring AI通过其集成的机器学习框架和预训练模型使得这些任务变得更加高效和可靠。

 

2. 图像处理

 

图像分类

 

图像分类是计算机视觉中常见的任务,它涉及将图像分配到预定义的类别中。Spring AI可以通过预训练的深度学习模型(如ResNetVGG等)来实现图像分类任务。以下是实现图像分类的基本步骤:

 

- 加载和预处理图像数据。

- 加载预训练的图像分类模型。

- 将图像输入模型进行推理。

- 解码模型的输出,获取预测的类别和概率。

 

目标检测

 

目标检测涉及在图像中定位和识别多个对象。Spring AI支持使用目标检测模型(如YOLOSSD等)来实现这一任务。实现目标检测的步骤包括:

 

- 加载和预处理图像数据。

- 加载预训练的目标检测模型。

- 将图像输入模型进行推理,获取对象的边界框和类别。

- 在图像上绘制边界框和类别标签,展示检测结果。

 

3. 音频处理

 

语音识别

 

语音识别是将语音信号转换为文本的过程。Spring AI可以集成常见的语音识别模型(如DeepSpeechwav2vec等),实现从音频到文本的转换。实现语音识别的步骤包括:

 

- 加载和预处理音频数据。

- 加载预训练的语音识别模型。

- 将音频输入模型进行推理,获取文本转录结果。

 

音频情感分析

 

音频情感分析涉及识别语音中的情感状态,如高兴、悲伤、愤怒等。Spring AI可以整合情感分析模型,用于分析和推断语音中所表达的情感。实现音频情感分析的步骤包括:

 

- 加载和预处理音频数据。

- 加载预训练的情感分析模型。

- 将音频输入模型进行推理,获取情感分类结果。

总结

通过Spring AI的丰富模型支持和集成,你可以轻松地实现图像处理和音频处理任务,无论是进行图像分类、目标检测,还是进行语音识别、情感分析等任务,Spring AI都提供了简洁而强大的解决方案。这些功能不仅可以加速开发过程,还可以帮助优化和扩展你的应用程序的功能和性能。

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
目录
相关文章
|
8天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
72 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
12天前
|
机器学习/深度学习 人工智能
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
Leffa 是 Meta 开源的图像生成框架,通过引入流场学习在注意力机制中精确控制人物的外观和姿势。该框架不增加额外参数和推理成本,适用于多种扩散模型,展现了良好的模型无关性和泛化能力。
56 11
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
|
17天前
|
人工智能 API 语音技术
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
TEN Agent 是一个开源的实时多模态 AI 代理框架,集成了 OpenAI Realtime API 和 RTC 技术,支持语音、文本和图像的多模态交互,具备实时通信、模块化设计和多语言支持等功能,适用于智能客服、实时语音助手等多种场景。
110 15
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
|
9天前
|
存储 人工智能 安全
从AI换脸到篡改图像,合合信息如何提升视觉内容安全?
从AI换脸到篡改图像,合合信息如何提升视觉内容安全?
从AI换脸到篡改图像,合合信息如何提升视觉内容安全?
|
18天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
72 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
20天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
61 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
20天前
|
人工智能 搜索推荐 开发者
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。
59 11
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
|
24天前
|
人工智能 编解码 网络架构
GenCast:谷歌DeepMind推出的AI气象预测模型
GenCast是由谷歌DeepMind推出的革命性AI气象预测模型,基于扩散模型技术,提供长达15天的全球天气预报。该模型在97.2%的预测任务中超越了全球顶尖的中期天气预报系统ENS,尤其在极端天气事件的预测上表现突出。GenCast能在8分钟内生成预报,显著提高预测效率,并且已经开源,包括代码和模型权重,支持更广泛的天气预报社区和研究。
141 14
GenCast:谷歌DeepMind推出的AI气象预测模型
|
23天前
|
机器学习/深度学习 人工智能 编解码
【AI系统】Transformer 模型小型化
本文介绍了几种轻量级的 Transformer 模型,旨在解决传统 Transformer 参数庞大、计算资源消耗大的问题。主要包括 **MobileVit** 和 **MobileFormer** 系列,以及 **EfficientFormer**。MobileVit 通过结合 CNN 和 Transformer 的优势,实现了轻量级视觉模型,特别适合移动设备。MobileFormer 则通过并行结构融合了 MobileNet 和 Transformer,增强了模型的局部和全局表达能力。
58 8
【AI系统】Transformer 模型小型化
|
21天前
|
存储 人工智能 PyTorch
【AI系统】模型转换流程
本文详细介绍了AI模型在不同框架间的转换方法,包括直接转换和规范式转换两种方式。直接转换涉及从源框架直接生成目标框架的模型文件,而规范式转换则通过一个中间标准格式(如ONNX)作为桥梁,实现模型的跨框架迁移。文中还提供了具体的转换流程和技术细节,以及模型转换工具的概览,帮助用户解决训练环境与部署环境不匹配的问题。
38 5
【AI系统】模型转换流程