计算机算法设计与分析 第2章 递归与分治策略 (笔记)

简介: 计算机算法设计与分析 第2章 递归与分治策略 (笔记)

第2章 递归与分治策略

 

2.1 递归的概念

直接或间接调用自身为递归。

采用递归的目的(思路)是将一个较大(或较复杂)的问题分解成较小的相同问题。

使用递归方法时,一定要设置结束递归的边界条件。

递归的实现的关键是建立递归调用工作栈。(但使用时并不需要我们去建立,系统自动进行这个操作。)

递归的优点是形式简单,缺点是运行效率低(多次调用函数耗费大量时间、空间,问题规模较大时无法在规定时间内完成)。

例-阶乘】 阶乘函数 n!

可用递归函数定义:

n! = 1          ,n=0

      n(n-1)!  ,n>0

递归函数必须有非递归定义(直接给定)的初始值

第一式给出初始值,第二式给出用较小自变量表示较大自变量的函数值的式子。

用C++表示:

int factorial(int n) {
  if( n == 0)
    return 1;
  else
    return n*factorial(n-1);
}

例-斐波那契数列

数列1,1,2,3,5,8,13,21,...为斐波那契数列。

F(n) = 1                    , n = 0或1

F(n) = F(n-1)+F(n-2)  n>1

C++表示:

int fibonacci(int n){
  if (n<=1)
    return 1;
  else
    return fibonacci(n-1)+fibonacci(n-2);
}


【例-Hanoi塔问题】

汉诺塔问题是一个经典的可用递归解决的问题。

问题简述:

设有3个塔座,记为a,b,c

开始时a上一共叠有n个圆盘,圆盘从下到上,由大到小地叠在一起。

要求把a上的n个圆盘移到b上,仍按照上小下大的顺序叠放。

规则是每次只能移动一个盘子,且大盘子不能压在小盘子上。

 

使用递归方法分析这个问题:

当n=1时,将这个盘子放在b上即可

n>1时,先把n-1个盘子放在c上,再把最大的那个放在b上,接着把n-1个盘子放在b上。

void hanoi(int n, int a, int b, int c) {  //把a上的n个圆盘移到b上
    if(n>0){               //n>0,(有盘子时执行下面操作,n=0就放完了,结束)
        hanoi(n-1,a,c,b);  //把a上的n-1个圆盘移到c上,b是中转站
        move(a,b);         //移动剩下的那个大圆盘
        hanoi(n-1,c,b,a);  //将c上的n-1个圆盘移到b上,a是中转站
    }
}

2.2 分治法的基本思想

分治法的基本思想是将一个规模为n的问题 分解为 k个规模较小的子问题。子问题相互独立与原问题相同

递归地解这些子问题,然后将各子问题地解合并得到原问题的解。

 【例-二分搜索技术】

给定以排序的n个元素a[0,n-1],要在这n个元素里找一特定元素x。

若使用顺序搜索方法逐个比较x和a[]中的元素,最坏情况下要对比完所有的n个元素,时间复杂度O(n)。


使用二分搜索可在O(logn)时间完成搜索。基本思想如下:

将n个元素分为个数相当的两半,取a[n/2]与x比较,

若x= a[n/2],找到x,算法终止;

若x<a[n/2],则x在a[n/2]左侧,在a[n/2]左侧搜索;

若a>[n/2],x在a[n/2]右侧,在a[n/2[右侧搜索。

 

template<class Type>
int BinarySearch(Type a[],const Type& x,int n){
    int left = 0;
    int right = n-1;
    while(left<=right){
        int middle = (left+right)/2;
        if(x==a[middle])
            return middle;
        if(x>a[middle])
            left = middle+1;
        if(x<a[middle])
            right = middle-1;
    }
    return -1;
}


目录
打赏
0
0
0
0
48
分享
相关文章
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
50 15
算法系列之分治算法
分治算法(Divide and Conquer)是一种解决复杂问题的非常实用的策略,广泛应用于计算机科学中的各个领域。它的核心思想是将一个复杂的问题分解成若干个相同或相似的子问题,递归地解决这些子问题,然后将子问题的解合并,最终得到原问题的解。分治算法的典型应用包括归并排序、快速排序、二分查找等。
120 72
 算法系列之分治算法
企业员工数据泄露防范策略:基于 C++ 语言的布隆过滤器算法剖析[如何防止员工泄密]
企业运营过程中,防范员工泄密是信息安全领域的核心议题。员工泄密可能致使企业核心数据、商业机密等关键资产的流失,进而给企业造成严重损失。为应对这一挑战,借助恰当的数据结构与算法成为强化信息防护的有效路径。本文专注于 C++ 语言中的布隆过滤器算法,深入探究其在防范员工泄密场景中的应用。
23 8
基于 Python 哈希表算法的员工上网管理策略研究
于当下数字化办公环境而言,员工上网管理已成为企业运营管理的关键环节。企业有必要对员工的网络访问行为予以监控,以此确保信息安全并提升工作效率。在处理员工上网管理相关数据时,适宜的数据结构与算法起着举足轻重的作用。本文将深入探究哈希表这一数据结构在员工上网管理场景中的应用,并借助 Python 代码示例展开详尽阐述。
35 3
|
2月前
|
算法系列之递归反转单链表
递归反转链表的基本思路是将当前节点的next指针指向前一个节点,然后递归地对下一个节点进行同样的操作。递归的核心思想是将问题分解为更小的子问题,直到达到基本情况(通常是链表末尾)。
41 5
算法系列之递归反转单链表
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
455 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
基于问题“如何监控局域网内的电脑”——Node.js 的 ARP 扫描算法实现局域网内计算机监控的技术探究
在网络管理与安全领域,监控局域网内计算机至关重要。本文探讨基于Node.js的ARP扫描算法,通过获取IP和MAC地址实现有效监控。使用`arp`库安装(`npm install arp`)并编写代码,可定期扫描并对比设备列表,判断设备上线和下线状态。此技术适用于企业网络管理和家庭网络安全防护,未来有望进一步提升效率与准确性。
47 8
架构学习:7种负载均衡算法策略
四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。
487 11
架构学习:7种负载均衡算法策略
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
546 13
机器学习算法的优化与改进:提升模型性能的策略与方法
Java线程调度揭秘:从算法到策略,让你面试稳赢!
在社招面试中,关于线程调度和同步的相关问题常常让人感到棘手。今天,我们将深入解析Java中的线程调度算法、调度策略,探讨线程调度器、时间分片的工作原理,并带你了解常见的线程同步方法。让我们一起破解这些面试难题,提升你的Java并发编程技能!
116 16

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等