归并排序就是这么容易

简介: 归并排序就是这么容易

愚昧者怨天尤人,无能者长吁短叹,儒弱者颓然放弃。

归并排序就是这么容易

welcome rodert

归并排序(Merge Sort)

排序算法很重要



介绍



【百度百科】:归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。归并排序是一种稳定的排序方法。

分治法:

分治法可以通俗的解释为:把一片领土分解,分解为若干块小部分,然后一块块地占领征服,被分解的可以是不同的政治派别或是其他什么,然后让他们彼此异化。

分治法的精髓:

分--将问题分解为规模更小的子问题;

治--将这些规模更小的子问题逐个击破;

合--将已解决的子问题合并,最终得出“母”问题的解;

 

实现

算法描述:

  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置;
  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
  4. 重复步骤 3 直到某一指针达到序列尾;
  1. 将另一序列剩下的所有元素直接复制到合并序列尾。

(看完这个描述是否还不清楚)

动态图演示:

选择排序流程图

图片来源百度


Java代码实现

 

 public static int[] mergeSort(int[] nums, int l, int h) {
        if (l == h)
            return new int[] { nums[l] };
         
        int mid = l + (h - l) / 2;
        int[] leftArr = mergeSort(nums, l, mid); //左有序数组
        int[] rightArr = mergeSort(nums, mid + 1, h); //右有序数组
        int[] newNum = new int[leftArr.length + rightArr.length]; //新有序数组
         
        int m = 0, i = 0, j = 0; 
        while (i < leftArr.length && j < rightArr.length) {
            newNum[m++] = leftArr[i] < rightArr[j] ? leftArr[i++] : rightArr[j++];
        }
        while (i < leftArr.length)
            newNum[m++] = leftArr[i++];
        while (j < rightArr.length)
            newNum[m++] = rightArr[j++];
        return newNum;
    }
    public static void main(String[] args) {
        int[] nums = new int[] { 9, 8, 7, 6, 5, 4, 3, 2, 10 };
        int[] newNums = mergeSort(nums, 0, nums.length - 1);
        for (int x : newNums) {
            System.out.println(x);
        }
    }

类似方法二:

public class MergeSort implements IArraySort {
    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
        if (arr.length < 2) {
            return arr;
        }
        int middle = (int) Math.floor(arr.length / 2);
        int[] left = Arrays.copyOfRange(arr, 0, middle);
        int[] right = Arrays.copyOfRange(arr, middle, arr.length);
        return merge(sort(left), sort(right));
    }
    protected int[] merge(int[] left, int[] right) {
        int[] result = new int[left.length + right.length];
        int i = 0;
        while (left.length > 0 && right.length > 0) {
            if (left[0] <= right[0]) {
                result[i++] = left[0];
                left = Arrays.copyOfRange(left, 1, left.length);
            } else {
                result[i++] = right[0];
                right = Arrays.copyOfRange(right, 1, right.length);
            }
        }
        while (left.length > 0) {
            result[i++] = left[0];
            left = Arrays.copyOfRange(left, 1, left.length);
        }
        while (right.length > 0) {
            result[i++] = right[0];
            right = Arrays.copyOfRange(right, 1, right.length);
        }
        return result;
    }
}

一道使用leetcode题

148. 排序链表
在 O(n log n) 时间复杂度和常数级空间复杂度下,对链表进行排序。
示例 1:
输入: 4->2->1->3
输出: 1->2->3->4
示例 2:
输入: -1->5->3->4->0
输出: -1->0->3->4->5
/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) { val = x; }
 * }
 */
class Solution {
    public ListNode sortList(ListNode head) {
    }
}


题解:

class Solution {
    public ListNode sortList(ListNode head) {
        if (head == null || head.next == null)
            return head;
        ListNode fast = head.next, slow = head;
        while (fast != null && fast.next != null) {
            slow = slow.next;
            fast = fast.next.next;
        }
        ListNode tmp = slow.next;
        slow.next = null;
        ListNode left = sortList(head);
        ListNode right = sortList(tmp);
        ListNode h = new ListNode(0);
        ListNode res = h;
        while (left != null && right != null) {
            if (left.val < right.val) {
                h.next = left;
                left = left.next;
            } else {
                h.next = right;
                right = right.next;
            }
            h = h.next;
        }
        h.next = left != null ? left : right;
        return res.next;
    }
}


转载是一种动力 分享是一种美德 开源是一种信仰

目录
相关文章
|
11天前
|
存储 关系型数据库 分布式数据库
PostgreSQL 18 发布,快来 PolarDB 尝鲜!
PostgreSQL 18 发布,PolarDB for PostgreSQL 全面兼容。新版本支持异步I/O、UUIDv7、虚拟生成列、逻辑复制增强及OAuth认证,显著提升性能与安全。PolarDB-PG 18 支持存算分离架构,融合海量弹性存储与极致计算性能,搭配丰富插件生态,为企业提供高效、稳定、灵活的云数据库解决方案,助力企业数字化转型如虎添翼!
|
9天前
|
存储 人工智能 搜索推荐
终身学习型智能体
当前人工智能前沿研究的一个重要方向:构建能够自主学习、调用工具、积累经验的小型智能体(Agent)。 我们可以称这种系统为“终身学习型智能体”或“自适应认知代理”。它的设计理念就是: 不靠庞大的内置知识取胜,而是依靠高效的推理能力 + 动态获取知识的能力 + 经验积累机制。
347 130
|
9天前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
本文讲解 Prompt 基本概念与 10 个优化技巧,结合学术分析 AI 应用的需求分析、设计方案,介绍 Spring AI 中 ChatClient 及 Advisors 的使用。
433 130
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
|
3天前
|
存储 安全 前端开发
如何将加密和解密函数应用到实际项目中?
如何将加密和解密函数应用到实际项目中?
201 138
|
9天前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
389 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
3天前
|
存储 JSON 安全
加密和解密函数的具体实现代码
加密和解密函数的具体实现代码
202 136
|
22天前
|
弹性计算 关系型数据库 微服务
基于 Docker 与 Kubernetes(K3s)的微服务:阿里云生产环境扩容实践
在微服务架构中,如何实现“稳定扩容”与“成本可控”是企业面临的核心挑战。本文结合 Python FastAPI 微服务实战,详解如何基于阿里云基础设施,利用 Docker 封装服务、K3s 实现容器编排,构建生产级微服务架构。内容涵盖容器构建、集群部署、自动扩缩容、可观测性等关键环节,适配阿里云资源特性与服务生态,助力企业打造低成本、高可靠、易扩展的微服务解决方案。
1361 8
|
8天前
|
监控 JavaScript Java
基于大模型技术的反欺诈知识问答系统
随着互联网与金融科技发展,网络欺诈频发,构建高效反欺诈平台成为迫切需求。本文基于Java、Vue.js、Spring Boot与MySQL技术,设计实现集欺诈识别、宣传教育、用户互动于一体的反欺诈系统,提升公众防范意识,助力企业合规与用户权益保护。