【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍

简介: 【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍


之前我们用到的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是hw(像素),那么它可以表示为一个3×h×w的多维数组。我们将大小为3的这一维称为通道(channel)维。本文我们将介绍含多个输入通道或多个输出通道的卷积核。

1 多输入通道–单输出通道


image.png

image.png

接下来我们实现含多个输入通道的互相关运算。我们只需要对每个通道做互相关运算,然后通过add_n函数进行累加。

import torch
from torch import nn
import sys
def corr2d(X, K):
    # 计算单个通道
    h, w = K.shape
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i: i + h, j: j + w] * K).sum()
    return Y
def corr2d_multi_in(X, K):
    # 计算多个通道
    # 沿着X和K的第0维(通道维)分别计算再相加
    res = corr2d(X[0, :, :], K[0, :, :])
    for i in range(1, X.shape[0]):
        res += corr2d(X[i, :, :], K[i, :, :])
    return res

我们可以构造图1中的输入数组X、核数组K来验证互相关运算的输出。

X = torch.tensor([[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
              [[1, 2, 3], [4, 5, 6], [7, 8, 9]]])
K = torch.tensor([[[0, 1], [2, 3]], [[1, 2], [3, 4]]])
corr2d_multi_in(X, K)

输出:

tensor([[ 56.,  72.],
        [104., 120.]])

2 多输出通道

上面一节中,输入通道有多个时,因为我们对各个通道的结果做了累加,所以不论输入通道数是多少,输出通道数总是为1。设卷积核输入通道数和输出通道数分别为cico,高和宽分别为khkw。如果希望得到含多个通道的输出,我们可以为每个输出通道分别创建形状为ci×kh×kw的核数组。将它们在输出通道维上连结,卷积核的形状即co×ci×kh×kw。在做互相关运算时,每个输出通道上的结果由卷积核在该输出通道上的核数组与整个输入数组计算而来。

下面我们实现一个互相关运算函数来计算多个通道的输出。

def corr2d_multi_in_out(X, K):
    # 对K的第0维遍历,每次同输入X做互相关计算。所有结果使用stack函数合并在一起
    return torch.stack([corr2d_multi_in(X, k) for k in K])

我们将核数组KK+1K中每个元素加一)和K+2连结在一起来构造一个输出通道数为3的卷积核。

K = torch.stack([K, K + 1, K + 2])
K.shape # torch.Size([3, 2, 2, 2])

下面我们对输入数组X与核数组K做互相关运算。此时的输出含有3个通道。其中第一个通道的结果与之前输入数组X与多输入通道、单输出通道核的计算结果一致。

corr2d_multi_in_out(X, K)

输出:

tensor([[[ 56.,  72.],
         [104., 120.]],
        [[ 76., 100.],
         [148., 172.]],
        [[ 96., 128.],
         [192., 224.]]])

3 1 × 1 1\times 11×1卷积层

1×1卷积层即卷积窗口形状为1×1kh=kw=1)的多通道卷积层,将其中的卷积运算称为1×1卷积。因为使用了最小窗口,1×1卷积失去了卷积层可以识别高和宽维度上相邻元素构成的模式的功能。实际上,1×1卷积的主要计算发生在通道维上。图2展示了使用输入通道数为3、输出通道数为2的1×1卷积核的互相关计算。此时,输入和输出具有相同的高和宽。输出中的每个元素来自输入中在高和宽上相同位置的元素在不同通道之间的按权重累加。假设我们将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么1×1卷积层的作用与全连接层等价

下面我们使用全连接层中的矩阵乘法来实现1×1卷积。这里需要在矩阵乘法运算前后对数据形状做一些调整。

def corr2d_multi_in_out_1x1(X, K):
    c_i, h, w = X.shape
    c_o = K.shape[0]
    X = X.view(c_i, h * w) 
    K = K.view(c_o, c_i)
    Y = torch.mm(K, X)  # 全连接层的矩阵乘法
    return Y.view(c_o, h, w)

经验证,做1 × 1 1\times 11×1卷积时,以上函数与之前实现的互相关运算函数corr2d_multi_in_out等价。

X = torch.rand(3, 3, 3)
K = torch.rand(2, 3, 1, 1)
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
(Y1 - Y2).norm().item() < 1e-6

输出:

True

在之后的模型里我们将会看到1×1卷积层被当作保持高和宽维度形状不变的全连接层使用。于是,我们可以通过调整网络层之间的通道数来控制模型复杂度。

总结

  • 使用多通道可以拓展卷积层的模型参数。
  • 假设将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么1×1卷积层的作用与全连接层等价。
  • 1×1卷积层通常用来调整网络层之间的通道数,并控制模型复杂度。

相关文章
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
112 7
|
25天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
35 1
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
1月前
|
机器学习/深度学习 计算机视觉 网络架构
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
纵观近年的顶会论文和研究热点,我们不得不承认一个现实:CNN相关的研究论文正在减少,曾经的"主角"似乎正逐渐淡出研究者的视野。
87 11
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
1月前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
42 1
|
1月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
1月前
|
机器学习/深度学习 人工智能 数据处理
深入浅出卷积神经网络(CNN)
【10月更文挑战第40天】本文旨在通过浅显易懂的语言和直观的示例,带领初学者了解并掌握卷积神经网络(CNN)的基本概念、结构以及在图像处理中的应用。我们将从CNN的核心组成讲起,逐步深入到网络训练的过程,最后通过一个实际的代码示例来展示如何利用CNN进行图像识别任务。无论你是编程新手还是深度学习爱好者,这篇文章都将为你打开一扇通往人工智能世界的新窗。

热门文章

最新文章