【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍

简介: 【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍


之前我们用到的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是hw(像素),那么它可以表示为一个3×h×w的多维数组。我们将大小为3的这一维称为通道(channel)维。本文我们将介绍含多个输入通道或多个输出通道的卷积核。

1 多输入通道–单输出通道


image.png

image.png

接下来我们实现含多个输入通道的互相关运算。我们只需要对每个通道做互相关运算,然后通过add_n函数进行累加。

import torch
from torch import nn
import sys
def corr2d(X, K):
    # 计算单个通道
    h, w = K.shape
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i: i + h, j: j + w] * K).sum()
    return Y
def corr2d_multi_in(X, K):
    # 计算多个通道
    # 沿着X和K的第0维(通道维)分别计算再相加
    res = corr2d(X[0, :, :], K[0, :, :])
    for i in range(1, X.shape[0]):
        res += corr2d(X[i, :, :], K[i, :, :])
    return res

我们可以构造图1中的输入数组X、核数组K来验证互相关运算的输出。

X = torch.tensor([[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
              [[1, 2, 3], [4, 5, 6], [7, 8, 9]]])
K = torch.tensor([[[0, 1], [2, 3]], [[1, 2], [3, 4]]])
corr2d_multi_in(X, K)

输出:

tensor([[ 56.,  72.],
        [104., 120.]])

2 多输出通道

上面一节中,输入通道有多个时,因为我们对各个通道的结果做了累加,所以不论输入通道数是多少,输出通道数总是为1。设卷积核输入通道数和输出通道数分别为cico,高和宽分别为khkw。如果希望得到含多个通道的输出,我们可以为每个输出通道分别创建形状为ci×kh×kw的核数组。将它们在输出通道维上连结,卷积核的形状即co×ci×kh×kw。在做互相关运算时,每个输出通道上的结果由卷积核在该输出通道上的核数组与整个输入数组计算而来。

下面我们实现一个互相关运算函数来计算多个通道的输出。

def corr2d_multi_in_out(X, K):
    # 对K的第0维遍历,每次同输入X做互相关计算。所有结果使用stack函数合并在一起
    return torch.stack([corr2d_multi_in(X, k) for k in K])

我们将核数组KK+1K中每个元素加一)和K+2连结在一起来构造一个输出通道数为3的卷积核。

K = torch.stack([K, K + 1, K + 2])
K.shape # torch.Size([3, 2, 2, 2])

下面我们对输入数组X与核数组K做互相关运算。此时的输出含有3个通道。其中第一个通道的结果与之前输入数组X与多输入通道、单输出通道核的计算结果一致。

corr2d_multi_in_out(X, K)

输出:

tensor([[[ 56.,  72.],
         [104., 120.]],
        [[ 76., 100.],
         [148., 172.]],
        [[ 96., 128.],
         [192., 224.]]])

3 1 × 1 1\times 11×1卷积层

1×1卷积层即卷积窗口形状为1×1kh=kw=1)的多通道卷积层,将其中的卷积运算称为1×1卷积。因为使用了最小窗口,1×1卷积失去了卷积层可以识别高和宽维度上相邻元素构成的模式的功能。实际上,1×1卷积的主要计算发生在通道维上。图2展示了使用输入通道数为3、输出通道数为2的1×1卷积核的互相关计算。此时,输入和输出具有相同的高和宽。输出中的每个元素来自输入中在高和宽上相同位置的元素在不同通道之间的按权重累加。假设我们将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么1×1卷积层的作用与全连接层等价

下面我们使用全连接层中的矩阵乘法来实现1×1卷积。这里需要在矩阵乘法运算前后对数据形状做一些调整。

def corr2d_multi_in_out_1x1(X, K):
    c_i, h, w = X.shape
    c_o = K.shape[0]
    X = X.view(c_i, h * w) 
    K = K.view(c_o, c_i)
    Y = torch.mm(K, X)  # 全连接层的矩阵乘法
    return Y.view(c_o, h, w)

经验证,做1 × 1 1\times 11×1卷积时,以上函数与之前实现的互相关运算函数corr2d_multi_in_out等价。

X = torch.rand(3, 3, 3)
K = torch.rand(2, 3, 1, 1)
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
(Y1 - Y2).norm().item() < 1e-6

输出:

True

在之后的模型里我们将会看到1×1卷积层被当作保持高和宽维度形状不变的全连接层使用。于是,我们可以通过调整网络层之间的通道数来控制模型复杂度。

总结

  • 使用多通道可以拓展卷积层的模型参数。
  • 假设将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么1×1卷积层的作用与全连接层等价。
  • 1×1卷积层通常用来调整网络层之间的通道数,并控制模型复杂度。

相关文章
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
134 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
162 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
246 10
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
298 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
526 55
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
285 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等