【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍

简介: 【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍


之前我们用到的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是hw(像素),那么它可以表示为一个3×h×w的多维数组。我们将大小为3的这一维称为通道(channel)维。本文我们将介绍含多个输入通道或多个输出通道的卷积核。

1 多输入通道–单输出通道


image.png

image.png

接下来我们实现含多个输入通道的互相关运算。我们只需要对每个通道做互相关运算,然后通过add_n函数进行累加。

import torch
from torch import nn
import sys
def corr2d(X, K):
    # 计算单个通道
    h, w = K.shape
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i: i + h, j: j + w] * K).sum()
    return Y
def corr2d_multi_in(X, K):
    # 计算多个通道
    # 沿着X和K的第0维(通道维)分别计算再相加
    res = corr2d(X[0, :, :], K[0, :, :])
    for i in range(1, X.shape[0]):
        res += corr2d(X[i, :, :], K[i, :, :])
    return res

我们可以构造图1中的输入数组X、核数组K来验证互相关运算的输出。

X = torch.tensor([[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
              [[1, 2, 3], [4, 5, 6], [7, 8, 9]]])
K = torch.tensor([[[0, 1], [2, 3]], [[1, 2], [3, 4]]])
corr2d_multi_in(X, K)

输出:

tensor([[ 56.,  72.],
        [104., 120.]])

2 多输出通道

上面一节中,输入通道有多个时,因为我们对各个通道的结果做了累加,所以不论输入通道数是多少,输出通道数总是为1。设卷积核输入通道数和输出通道数分别为cico,高和宽分别为khkw。如果希望得到含多个通道的输出,我们可以为每个输出通道分别创建形状为ci×kh×kw的核数组。将它们在输出通道维上连结,卷积核的形状即co×ci×kh×kw。在做互相关运算时,每个输出通道上的结果由卷积核在该输出通道上的核数组与整个输入数组计算而来。

下面我们实现一个互相关运算函数来计算多个通道的输出。

def corr2d_multi_in_out(X, K):
    # 对K的第0维遍历,每次同输入X做互相关计算。所有结果使用stack函数合并在一起
    return torch.stack([corr2d_multi_in(X, k) for k in K])

我们将核数组KK+1K中每个元素加一)和K+2连结在一起来构造一个输出通道数为3的卷积核。

K = torch.stack([K, K + 1, K + 2])
K.shape # torch.Size([3, 2, 2, 2])

下面我们对输入数组X与核数组K做互相关运算。此时的输出含有3个通道。其中第一个通道的结果与之前输入数组X与多输入通道、单输出通道核的计算结果一致。

corr2d_multi_in_out(X, K)

输出:

tensor([[[ 56.,  72.],
         [104., 120.]],
        [[ 76., 100.],
         [148., 172.]],
        [[ 96., 128.],
         [192., 224.]]])

3 1 × 1 1\times 11×1卷积层

1×1卷积层即卷积窗口形状为1×1kh=kw=1)的多通道卷积层,将其中的卷积运算称为1×1卷积。因为使用了最小窗口,1×1卷积失去了卷积层可以识别高和宽维度上相邻元素构成的模式的功能。实际上,1×1卷积的主要计算发生在通道维上。图2展示了使用输入通道数为3、输出通道数为2的1×1卷积核的互相关计算。此时,输入和输出具有相同的高和宽。输出中的每个元素来自输入中在高和宽上相同位置的元素在不同通道之间的按权重累加。假设我们将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么1×1卷积层的作用与全连接层等价

下面我们使用全连接层中的矩阵乘法来实现1×1卷积。这里需要在矩阵乘法运算前后对数据形状做一些调整。

def corr2d_multi_in_out_1x1(X, K):
    c_i, h, w = X.shape
    c_o = K.shape[0]
    X = X.view(c_i, h * w) 
    K = K.view(c_o, c_i)
    Y = torch.mm(K, X)  # 全连接层的矩阵乘法
    return Y.view(c_o, h, w)

经验证,做1 × 1 1\times 11×1卷积时,以上函数与之前实现的互相关运算函数corr2d_multi_in_out等价。

X = torch.rand(3, 3, 3)
K = torch.rand(2, 3, 1, 1)
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
(Y1 - Y2).norm().item() < 1e-6

输出:

True

在之后的模型里我们将会看到1×1卷积层被当作保持高和宽维度形状不变的全连接层使用。于是,我们可以通过调整网络层之间的通道数来控制模型复杂度。

总结

  • 使用多通道可以拓展卷积层的模型参数。
  • 假设将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么1×1卷积层的作用与全连接层等价。
  • 1×1卷积层通常用来调整网络层之间的通道数,并控制模型复杂度。

相关文章
|
9天前
|
机器学习/深度学习 算法 计算机视觉
卷积神经网络(CNN)的工作原理深度解析
【6月更文挑战第14天】本文深度解析卷积神经网络(CNN)的工作原理。CNN由输入层、卷积层、激活函数、池化层、全连接层和输出层构成。卷积层通过滤波器提取特征,激活函数增加非线性,池化层降低维度。全连接层整合特征,输出层根据任务产生预测。CNN通过特征提取、整合、反向传播和优化进行学习。尽管存在计算量大、参数多等问题,但随着技术发展,CNN在计算机视觉领域的潜力将持续增长。
|
10天前
|
机器学习/深度学习 自然语言处理 算法
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的自适应学习算法研究与应用
在深度学习领域,传统的静态模型在处理动态环境和非平稳数据时面临挑战。本文探讨了自适应学习算法在深度学习中的重要性及其应用。通过分析自适应学习算法在模型参数、损失函数和数据分布上的应用,展示了其在提升模型鲁棒性和泛化能力方面的潜力。具体讨论了几种代表性的自适应学习方法,并探索了它们在现实世界中的应用案例,从而展示了其在处理复杂问题和动态数据中的效果。
14 0
|
10天前
|
机器学习/深度学习 算法 数据可视化
【从零开始学习深度学习】46. 目标检测中锚框的概念、计算方法、样本锚框标注方式及如何选取预测边界框
【从零开始学习深度学习】46. 目标检测中锚框的概念、计算方法、样本锚框标注方式及如何选取预测边界框
|
10天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】47. Pytorch图片样式迁移实战:将一张图片样式迁移至另一张图片,创作自己喜欢风格的图片【含完整源码】
【从零开始学习深度学习】47. Pytorch图片样式迁移实战:将一张图片样式迁移至另一张图片,创作自己喜欢风格的图片【含完整源码】
|
3天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深入浅出:理解和实现深度学习中的卷积神经网络(CNN)
在当今的数据驱动世界,深度学习已经成为许多领域的关键技术。本文将深入探讨卷积神经网络(CNN)的原理、结构和应用,旨在帮助读者全面理解这项强大的技术,并提供实际的实现技巧。
18 0
|
10天前
|
机器学习/深度学习 资源调度 PyTorch
【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】
【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】
|
10天前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
|
10天前
|
机器学习/深度学习 自然语言处理 PyTorch
【从零开始学习深度学习】48.Pytorch_NLP实战案例:如何使用预训练的词向量模型求近义词和类比词
【从零开始学习深度学习】48.Pytorch_NLP实战案例:如何使用预训练的词向量模型求近义词和类比词
|
10天前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】

热门文章

最新文章